Khan, R. and Petru, J. and Seikh, A.H. (2023) Erosion prediction due to micron-sized particles in the multiphase flow of T and Y pipes of oil and gas fields. International Journal of Pressure Vessels and Piping, 206. ISSN 03080161
Full text not available from this repository.Abstract
The industrial pipeline components in the hydrocarbon and mineral processing plants may suffer erosion-induced damage and easily causes pipeline failure. This paper investigates a computational fluid dynamics (CFD)-Discrete particle (DP) modeling based on erosion prediction assessment of Tee (T) and Wye (Y) pipe configurations for gas-sand and water-sand flow conditions. The erosion under vertical-horizontal orientation was comprehensively investigated for 90° T-pipe, 45° Y-pipe, 30° Y-pipe, and 15° Y-pipe for different particle sizes. Finnie model is employed to evaluate the erosion rate and validated using qualitative and quantitative experimental results for the 90° T-pipe. Results manifest that the erosive wear is strongly influenced by the geometric configuration and erodent size. Particle trajectories show that particles in a 90° T-pipe tend to impact the junction of the pipe and rebound 2 to 3 times, which leads to a maximum erosion zone. The movement path of sand in the T-pipe is different from those of the Y-pipe, and one particle rebound is observed in the Y-pipe. Furthermore, the maximum erosive wear rate in the 15° Y-pipe is 3.36 times smaller than that of the 90° T-pipe. © 2023 Elsevier Ltd
Item Type: | Article |
---|---|
Impact Factor: | cited By 0 |
Uncontrolled Keywords: | Computational fluid dynamics; Gas industry; Gas plants; Oil sands; Particle size; Pipelines; Sand; Wear of materials, Discrete phase modeling; Erosion predictions; Erosive wear; Hydrocarbon processing; Micron-sized particles; Minerals processing plants; Oil and gas fields; Pipeline component; T-pipe; Y-pipe, Erosion |
Depositing User: | Mr Ahmad Suhairi Mohamed Lazim |
Date Deposited: | 04 Oct 2023 08:36 |
Last Modified: | 04 Oct 2023 08:36 |
URI: | http://scholars.utp.edu.my/id/eprint/37278 |