Hussain, T. and Nasif, M.S. and Hussin, H. and Azha, N.I.S. (2023) Utilization of Vibration to Enhance the Thermal Performance of Flat Plate Solar Collectors�A Numerical Study. Lecture Notes in Mechanical Engineering. pp. 419-426.
Full text not available from this repository.Abstract
This study investigates the combioned effect of low-frequency vibrations and heat transfer fluid on the fluid outlet temperature of flat plate solar collectors (FPSC).Low-frequency vibrations in the range of 5�10 Hz with a constant amplitude of 3 mm were applied on the FPSC having water (H2O) and Aluminum Oxide (Al2O3�H2O) water nanofluid as HTF.Computational Fluid Dynamics (CFD) study was carried out to simulated FPSC and the model validated with the experimental results from the literature.The results showed a noticeable enhancement in the fluid outlet temperature of FPSC after applying vibrations.With water as HTF, the fluid outlet temperature without vibrations was 41.4 °C, while by applying low-frequency vibrations of 5 and 10 Hz, it increased to 48.7 °C and 49.5 °C respectively.While with Aluminum Oxide (Al2O3�H2O) water nanofluid as HTF, the fluid outlet temperature without vibrations was 50.68 °C while by applying low-frequency vibrations of 5 and 10 Hz, it increased to 51.3 °C and 52.5 °C respectively. © 2023, Institute of Technology PETRONAS Sdn Bhd.
Item Type: | Article |
---|---|
Impact Factor: | cited By 0 |
Uncontrolled Keywords: | Alumina; Computational fluid dynamics; Heat transfer; Nanofluidics; Solar collectors; Vibrations (mechanical), Constant amplitude; Dynamic studies; Flat-plate solar collectors; Heat transfer fluids; Low-frequency vibration; Outlet temperature; Thermal Performance; Water nanofluids, Aluminum oxide |
Depositing User: | Mr Ahmad Suhairi Mohamed Lazim |
Date Deposited: | 09 Jan 2023 05:05 |
Last Modified: | 09 Jan 2023 05:05 |
URI: | http://scholars.utp.edu.my/id/eprint/34261 |