Modeling and Validation of Engine Cylinder Pressure During Starting of Free-Piston Linear Generator by Brushless Motor Commutation

Zulkifli, S.A. and Mohd, M.S. and Abd Aziz, A.R. (2023) Modeling and Validation of Engine Cylinder Pressure During Starting of Free-Piston Linear Generator by Brushless Motor Commutation. Lecture Notes in Mechanical Engineering. pp. 263-279.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

This paper describes mechanical modeling of a specific configuration of free-piston linear engine-generator (FPLG) during starting, by brushless commutation of linear motor.To account for piston blow-by, or air leakage through piston rings at low starting speeds, the model incorporates an air mass transfer algorithm for the air compression-expansion process in the engine cylinders.The model is verified with experimental data.Pressure profiles obtained during experimental validation of the FPLG are discussed, for different motoring conditions.The improved model shows a reduction of 28 in compression pressure compared to the ideal case.In single-stroke tests, the airflow corrective factor value of C = 3.7 � 10�7 is found to give the closest profile to experimental pressure for the right cylinder and C = 5.5 � 10�7 for the left cylinder, while C = 4.1 � 10�7 best matches the data of cyclic motoring tests.Results show that by increasing motoring voltage, the piston�s amplitude remains unchanged, since increasing motoring energy leads to better compression-expansion process, more effective air spring and a pressure profile closer to the lossless system. © 2023, Institute of Technology PETRONAS Sdn Bhd.

Item Type: Article
Impact Factor: cited By 0; Conference of 7th International Conference on Production, Energy and Reliability, ICPER 2020 ; Conference Date: 14 July 2020 Through 16 July 2020; Conference Code:284729
Uncontrolled Keywords: Engine pistons; Expansion; Linear motors; Mass transfer, Brushless motors; Compression-expansion; Cylinder pressures; Expansion process; Free piston; Free-piston linear generators; Linear engine generators; Mechanical modeling; Modeling and validation; Pressure profiles, Engine cylinders
Depositing User: Mr Ahmad Suhairi Mohamed Lazim
Date Deposited: 04 Jan 2023 02:51
Last Modified: 04 Jan 2023 02:51
URI: http://scholars.utp.edu.my/id/eprint/34196

Actions (login required)

View Item
View Item