State-of-the-Art: Assessing Semantic Similarity in Automated Short-Answer Grading Systems

Amur, Z.H. and Hooi, Y.K. (2022) State-of-the-Art: Assessing Semantic Similarity in Automated Short-Answer Grading Systems. Information Sciences Letters, 11 (5). pp. 1851-1858.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

The use of semantic in Natural Language Processing (NLP) has sparked the interest of academics and businesses in various fields. One such field is Automated Short-answer Grading Systems (ASAGS) for automatically evaluating responses for similarity with the expected answer. ASAGS poses semantic challenges because the responses of a topic are in the responder�s own words. This study is providing an in-depth analysis of work to improve the assessment of semantic similarity between corpora in natural language in the context of ASAGS. Three popular semantic approaches are corpus-based, knowledge-based, and deep learning are used to evaluate against the conventional methods in ASAGS. Finally, the gaps in knowledge are identified and new research areas are proposed. © 2022 NSP.

Item Type: Article
Impact Factor: cited By 0
Depositing User: Mr Ahmad Suhairi Mohamed Lazim
Date Deposited: 20 Dec 2022 04:01
Last Modified: 20 Dec 2022 04:01
URI: http://scholars.utp.edu.my/id/eprint/33977

Actions (login required)

View Item
View Item