Zwitterionic covalent organic framework as a multifunctional sulfur host toward durable lithium-sulfur batteries

Han, L. and Li, Y. and Yang, Y. and Sun, S. and Li, M. and Yue, J. and Chuah, C.Y. and Li, J. (2022) Zwitterionic covalent organic framework as a multifunctional sulfur host toward durable lithium-sulfur batteries. Journal of Colloid and Interface Science, 628. pp. 144-153.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

The shuttle effect and slow redox kinetics of sulfur cathode are the most significant technical challenges to the practical application of lithium-sulfur (Li-S) battery. Herein, a novel zwitterionic covalent organic framework (ZW-COF) wrapped onto carbon nanotubes (CNTs), labeled as ZW-COF@CNT, is developed by a reversible condensation reaction of 1,3,5-benzenetricarboxaldehyde (BTA) and 3,8-diamino-6-phenylphenanthridine (DPPD) with CNTs as a template and a subsequently-one-step post-synthetic grafting reaction with 1,3-propanesultone. The experimental results showed that, after loading active material sulfur, zwitterionic ZW-COF@CNT can effectively suppress the shuttle effect of the soluble lithium polysulfides (LiPSs) in Li-S batteries, and exhibits better cycling behavior than the as-developed neutral COF@CNT. Specifically, the as-obtained ZW-COF@CNT based sulfur cathode can maintain a discharge capacity of 944 mAh/g after 100 cycles, while that of COF@CNT based sulfur cathode drops to (665 mAh/g) after 100 cycles. Moreover, the ZW-COF@CNT based sulfur cathode delivers an attractive prolonged cycling behavior with a low capacity decay rate of 0.046 per cycle at 1 C. This work sheds new light on rational selection and design of functionalized COFs based sulfur cathode in the Li-S battery. © 2022 Elsevier Inc.

Item Type: Article
Impact Factor: cited By 0
Uncontrolled Keywords: Carbon nanotubes; Cathodes; Condensation reactions; Decay (organic); Grafting (chemical); Lithium compounds, Covalent organic frameworks; Cycling behavior; Grafting reactions; Lithium/sulfur batteries; Redox kinetics; Shuttle effect; Sulfur cathodes; Technical challenges; Zwitterion; Zwitterionics, Lithium sulfur batteries, 1,3,5 benzenetricarboxaldehyde; 3,8 diamino 6 phenylphenanthridine; aldehyde derivative; ampholyte; carbon nanotube; lithium; phenanthridine derivative; propanesultone; sulfur; unclassified drug, adsorption; Article; Brunauer Emmett Teller method; catalysis; chemical structure; controlled study; covalent bond; current density; electric conductivity; electrochemistry; immobilization; isotherm; molecular interaction; morphological trait; oxidation reduction reaction; polymerization; pore size distribution; surface area; synthesis
Depositing User: Mr Ahmad Suhairi Mohamed Lazim
Date Deposited: 07 Sep 2022 07:04
Last Modified: 07 Sep 2022 07:04
URI: http://scholars.utp.edu.my/id/eprint/33461

Actions (login required)

View Item
View Item