Xu, Y. and Choi, J. and Dass, S. and Maiti, T. (2013) Efficient Bayesian spatial prediction with mobile sensor networks using Gaussian Markov random fields. Automatica, 49 (12). pp. 3520-3530.
Full text not available from this repository.Abstract
In this paper, we consider the problem of predicting a large scale spatial field using successive noisy measurements obtained by mobile sensing agents. The physical spatial field of interest is discretized and modeled by a Gaussian Markov random field (GMRF) with uncertain hyperparameters. From a Bayesian perspective, we design a sequential prediction algorithm to exactly compute the predictive inference of the random field. The main advantages of the proposed algorithm are: (1) the computational efficiency due to the sparse structure of the precision matrix, and (2) the scalability as the number of measurements increases. Thus, the prediction algorithm correctly takes into account the uncertainty in hyperparameters in a Bayesian way and is also scalable to be usable for mobile sensor networks with limited resources. We also present a distributed version of the prediction algorithm for a special case. An adaptive sampling strategy is presented for mobile sensing agents to find the most informative locations in taking future measurements in order to minimize the prediction error and the uncertainty in hyperparameters simultaneously. The effectiveness of the proposed algorithms is illustrated by numerical experiments. © 2013 Elsevier Ltd. All rights reserved.
Item Type: | Article |
---|---|
Impact Factor: | cited By 37 |
Uncontrolled Keywords: | Adaptive sampling strategies; Gaussian Markov random field; Mobile sensing agents; Mobile sensor networks; Numerical experiments; Prediction algorithms; Predictive inferences; Sequential prediction algorithms, Algorithms; Computerized tomography; Forecasting; Gaussian noise (electronic); Markov processes; Sensor networks; Uncertainty analysis, Mobile agents |
Depositing User: | Ms Sharifah Fahimah Saiyed Yeop |
Date Deposited: | 30 Mar 2022 01:10 |
Last Modified: | 30 Mar 2022 01:10 |
URI: | http://scholars.utp.edu.my/id/eprint/32959 |