Ali, L. and Islam, S. and Gul, T. and Khan, I. and Dennis, L.C.C. (2016) New version of Optimal Homotopy Asymptotic Method for the solution of nonlinear boundary value problems in finite and infinite intervals. Alexandria Engineering Journal, 55 (3). pp. 2811-2819.
Full text not available from this repository.Abstract
In this research work a new version of Optimal Homotopy Asymptotic Method is applied to solve nonlinear boundary value problems (BVPs) in finite and infinite intervals. It comprises of initial guess, auxiliary functions (containing unknown convergence controlling parameters) and a homotopy. The said method is applied to solve nonlinear Riccati equations and nonlinear BVP of order two for thin film flow of a third grade fluid on a moving belt. It is also used to solve nonlinear BVP of order three achieved by Mostafa et al. for Hydro-magnetic boundary layer and micro-polar fluid flow over a stretching surface embedded in a non-Darcian porous medium with radiation. The obtained results are compared with the existing results of Runge-Kutta (RK-4) and Optimal Homotopy Asymptotic Method (OHAM-1). The outcomes achieved by this method are in excellent concurrence with the exact solution and hence it is proved that this method is easy and effective. © 2016 Faculty of Engineering, Alexandria University
Item Type: | Article |
---|---|
Impact Factor: | cited By 13 |
Uncontrolled Keywords: | Boundary layer flow; Boundary layers; Boundary value problems; Galerkin methods; Porous materials; Riccati equations; Runge Kutta methods, Auxiliary functions; Auxiliary parameters; Embedding parameters; Initial guess; Optimal homotopy asymptotic methods, Nonlinear equations |
Depositing User: | Ms Sharifah Fahimah Saiyed Yeop |
Date Deposited: | 27 Aug 2021 09:38 |
Last Modified: | 27 Aug 2021 09:38 |
URI: | http://scholars.utp.edu.my/id/eprint/25664 |