The effect of reaction temperature on the formation of 2H-SiC and 3C-SiC nanowhiskers

Dzulkifli, H. and Mustapha, M. and Sallih, N. and Kakooei, S. and Mustapha, F. (2020) The effect of reaction temperature on the formation of 2H-SiC and 3C-SiC nanowhiskers. Engineering Solid Mechanics, 8 (4). pp. 381-388.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Synthesis of 2H and 3C-polytype silicon carbide nanowhiskers mixture of silicon dioxide and carbon was performed by carbothermal reduction process. The reaction temperature for synthesis of 2H-SiC was varied from 1350 C to 1650 C and for the 3C-SiC this range was varied from 1450 C to 1650 C. Scanning Electron Microscopy (SEM) analyses showed that nanowhiskers structures of both 2H-SiC and 3C-SiC polytypes has a size up to 100 nm in diameters and several microns in length. However, the orientation and pattern of grains were different in both structures. While for 3C-SiC polytype, the shape has been classified as SiC majorly grew along 101 plane by X-ray Diffraction pattern and finalized by Raman shift peaks at 799 and 959 cm-1, the shape of 2H-polytipe silicon carbide was categorized as SiC majorly grown along 111 plane confirmed by Raman shift peak at 799 and 963 cm-1. The mechanism of vapor-gas interaction was also suggested and discussed for both SiC nanowhiskers polytypes. © 2020 Growing Science Ltd. All rights reserved. © 2020 by the authors; licensee Growing Science, Canada.

Item Type: Article
Impact Factor: cited By 0
Depositing User: Ms Sharifah Fahimah Saiyed Yeop
Date Deposited: 19 Aug 2021 06:09
Last Modified: 19 Aug 2021 06:09
URI: http://scholars.utp.edu.my/id/eprint/23187

Actions (login required)

View Item
View Item