Machmudah, A. and Parman, S. and Baharom, M.B. (2018) Continuous path planning of Kinematically redundant manipulator using Particle Swarm Optimization. International Journal of Advanced Computer Science and Applications, 9 (3). pp. 207-217.
Full text not available from this repository.Abstract
This paper addresses a problem of a continuous path planning of a redundant manipulator where an end-effector needs to follow a desired path. Based on a geometrical analysis, feasible postures of a self-motion are mapped into an interval so that there will be an angle domain boundary and a redundancy resolution to track the desired path lies within this boundary. To choose a best solution among many possible solutions, meta-heuristic optimizations, namely, a Genetic Algorithm (GA), a Particle Swarm Optimization (PSO), and a Grey Wolf Optimizer (GWO) will be employed with an optimization objective to minimize a joint angle travelling distance. To achieve n-connectivity of sampling points, the angle domain trajectories are modelled using a sinusoidal function generated inside the angle domain boundary. A complex geometrical path obtained from Bezier and algebraic curves are used as the traced path that should be followed by a 3-Degree of Freedom (DOF) arm robot manipulator and a hyper-redundant manipulator. The path from the PSO yields better results than that of the GA and GWO. © 2015 The Science and Information (SAI) Organization Limited.
Item Type: | Article |
---|---|
Impact Factor: | cited By 0 |
Departments / MOR / COE: | Research Institutes > Energy |
Depositing User: | Mr Ahmad Suhairi Mohamed Lazim |
Date Deposited: | 01 Aug 2018 01:14 |
Last Modified: | 07 Nov 2018 03:39 |
URI: | http://scholars.utp.edu.my/id/eprint/21886 |