Bashiri, R. and Mohamed, N.M. and Suhaimi, N.A. and Shahid, M.U. and Kait, C.F. and Sufian, S. and Khatani, M. and Mumtaz, A. (2018) Photoelectrochemical water splitting with tailored TiO2/SrTiO3@g-C3N4 heterostructure nanorod in photoelectrochemical cell. Diamond and Related Materials, 85. pp. 5-12.
Full text not available from this repository.Abstract
Solar hydrogen production through water photosplitting in photoelectrochemical (PEC) cell is one of the most desirable, cost-effective and environmentally friendly processes. However, it is still suffering from the low photoconversion efficiency. A novel tailored TiO2/SrTiO3@g-C3N4 heterostructure nanorod was synthesized to investigate the photocatalytic hydrogen production under visible light condition in glycerol-based PEC cell. A series of TiO2 and TiO2/SrTiO3 nanorod were grown on F-doped SnO2 glass (FTO) substrate by hydrothermal method and then were modified using graphitic carbon nitride g-C3N4 via the chemical bath deposition technique. The samples were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), diffuse reflectance UV�Vis spectroscopy (DR-UV�Vis), and Fourier transform infrared (FTIR) to explore the physicochemical properties of the prepared photocatalysts. The prepared TiO2/SrTiO3@g-C3N4 served as the efficient photoanode with maximum produced hydrogen of 73 μmol/cm2 compared to others. This photocatalyst had more uniformed structures and shifted more absorbance to the visible region as presented in FESEM and DR-UV�Vis. Therefore, high performance of this photocatalyst can be ascribed to the close interfacial connections between g-C3N4 and TiO2/SrTiO3 where the photo-generated electron and holes were effectively separated. © 2018 Elsevier B.V.
Item Type: | Article |
---|---|
Impact Factor: | cited By 1 |
Uncontrolled Keywords: | Cost effectiveness; Electrochemistry; Field emission microscopes; Fourier transform infrared spectroscopy; Heterojunctions; Hydrogen production; Nanorods; Photocatalysts; Photoelectrochemical cells; Scanning electron microscopy; Solar power generation; Strontium compounds; Titanium dioxide; X ray diffraction, Chemical bath deposition technique; Environmentally friendly process; Field emission scanning electron microscopy; g-C3N4; Photocatalytic hydrogen production; Photoelectrochemical water splitting; Solar Hydrogen Production; TiO2/SrTiO3, High resolution transmission electron microscopy |
Depositing User: | Mr Ahmad Suhairi Mohamed Lazim |
Date Deposited: | 26 Feb 2019 02:58 |
Last Modified: | 26 Feb 2019 02:58 |
URI: | http://scholars.utp.edu.my/id/eprint/20940 |