The performance of PPOdm-CNF Mixed Matrix Membrane for CO2/CH4 separation

Murugiah, P.S. and Oh, P.C. and Lau, K.K. (2018) The performance of PPOdm-CNF Mixed Matrix Membrane for CO2/CH4 separation. International Journal of Automotive and Mechanical Engineering, 15 (1). pp. 5086-5096.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Mixed Matrix Membrane (MMM) is one of the most promising candidate among the available gas separation application for CO2/CH4 separation in natural gas industries. However, the fabrication of a defect-free MMM remains a challenge. For this work, a novel MMM was developed by incorporating carbon nanofibers (CNF) at different weight loadings into poly (2, 6-dimethyl-1, 4-pheneylene oxide) (PPOdm) polymer matrix via dry-phase inversion technique. CNF was purified with hydrogen peroxide prior to membrane fabrication. Approximately 178 increment in the CO2 permeability were attained at 3 wt of CNF loading whereas the CO2/CH4 selectivity were increased by 53 compared to pristine PPOdm polymeric membrane. The smooth wall of CNF coupled with its larger pore diameter acted as a pathway and renders high gas permeability values. PPOdm - 3 wt CNF MMM exhibits improved morphology with no significant filler agglomeration on the polymer matrix. The TGA and DSC analysis showed that at 3 wt of CNF loading, the thermal stability of the polymer chains was enhanced in which higher decomposition (Td = 425 °C) and glass transition (Tg =210 °C) temperatures were reported. © Universiti Malaysia Pahang, Malaysia.

Item Type: Article
Impact Factor: cited By 0
Uncontrolled Keywords: Carbon dioxide; Carbon nanofibers; Filled polymers; Gas permeability; Glass transition; Separation; Thermodynamic stability, 6-dimethyl-1,4-pheneylene oxide); CO2 separation; Dry phase inversion; Gas separations; Membrane fabrication; Mixed matrix membranes; Poly (2; Polymer chains, Gas permeable membranes
Departments / MOR / COE: Departments > Chemical Engineering
Depositing User: Mr Ahmad Suhairi Mohamed Lazim
Date Deposited: 23 Jul 2018 03:30
Last Modified: 23 Jul 2018 03:30
URI: http://scholars.utp.edu.my/id/eprint/20570

Actions (login required)

View Item
View Item