Hybrid Intelligent Warning System for Boiler tube Leak Trips

Singh, D. and Ismail, F.B. and Shakir Nasif, M. (2017) Hybrid Intelligent Warning System for Boiler tube Leak Trips. MATEC Web of Conferences, 131.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Repeated boiler tube leak trips in coal fired power plants can increase operating cost significantly. An early detection and diagnosis of boiler trips is essential for continuous safe operations in the plant. In this study two artificial intelligent monitoring systems specialized in boiler tube leak trips have been proposed. The first intelligent warning system (IWS-1) represents the use of pure artificial neural network system whereas the second intelligent warning system (IWS-2) represents merging of genetic algorithms and artificial neural networks as a hybrid intelligent system. The Extreme Learning Machine (ELM) methodology was also adopted in IWS-1 and compared with traditional training algorithms. Genetic algorithm (GA) was adopted in IWS-2 to optimize the ANN topology and the boiler parameters. An integrated data preparation framework was established for 3 real cases of boiler tube leak trip based on a thermal power plant in Malaysia. Both the IWSs were developed using MATLAB coding for training and validation. The hybrid IWS-2 performed better than IWS-1.The developed system was validated to be able to predict trips before the plant monitoring system. The proposed artificial intelligent system could be adopted as a reliable monitoring system of the thermal power plant boilers. © The authors, published by EDP Sciences, 2017.

Item Type: Article
Impact Factor: cited By 0
Departments / MOR / COE: Division > Academic > Faculty of Engineering > Mechanical Engineering
Depositing User: Mr Ahmad Suhairi Mohamed Lazim
Date Deposited: 22 Apr 2018 14:29
Last Modified: 22 Apr 2018 14:29
URI: http://scholars.utp.edu.my/id/eprint/19971

Actions (login required)

View Item
View Item