2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012)

An Optimal Design of Moving Objects Tracking
Algorithm on FPGA

Lina Noaman Elkhatib, Fawnizu Azmadi Hussin, Likun Xia and Patrick Sebastian
Centre for Intelligent Signal and Imaging Research
Electrical and Electronic Engineering Department, University Teknologi PETRONAS,
Bandar Seri Iskandar, Perak, Malaysia
rds.r.mdbywalking@gmail.com, {fawnizu, likun_xia, patrick_sebastian} @petronas.com.my

Abstract- This paper presents an optimal design and
implementation of hardware system units for tracking moving
objects on FPGA. Designs outline dataflow between different
frequency domains using pipelining and FIFOs as buffers. The
system implements a large amount of operations in order to
apply a tracking algorithm called Adaptive Hybrid Difference.
Two core units were built to implement the algorithm on
FPGA, the adaptive threshold unit and the binary image
builder unit. By implementing the proposed design with
pipelining and parallelism, the number of clock cycles required
to calculate the adaptive threshold over 30 frames has reduced
from 23 x cycles to 4.3 x cycles. Additionally, optimal logic
elements utilization has been achieved through the design.

L INTRODUCTION

Implementation of image processing algorithms on field
programmable gate array (FPGA) devices can achieve a
system with better efficiency and dissipate less power and
resources as compared to the use of software [a reference is
required] implementation. Many hardware systems have
been designed to handle video surveillance algorithms of
parallel nature utilizing the parallelism capabilities of the
FPGAs. On the other hand, object tracking and detection are
the prime features of video surveillance systems from
implementation perspective. Thus, many researchers in both
embedded systems and surveillance applications areas have
been interested in the design and implementation of object
tracking and detection on embedded systems such as FPGA.
However, an incorrect FPGA design may cost extra
unnecessary gates as area and power which will slowdown
the system. In addition, the building of large systems
represents a big challenge requiring the adjustment of data
flow between blocks of different frequencies. An additional
important issue for tracking algorithms that must be met by
design on FPGA is to achieve the real time conditions,
which is estimated as 30 frames per second (fps) [1].

Segmentation is the common algorithm that has been used
by many researches in the implementation of object tracking
on FPGA. Meingast, et al. [2] have implemented their
tracking system using image segmentation based on color
threshold. The system works with 27 MHz frequency on
image size of 768 * 288 pixels while the logic element (LE)
used estimated by 798 LEs, which represent 10% of the
device logic utility. It has achieved throughput of 25 fps.

Other works using segmentation algorithms and pattern
matching through extracting spatial features of the detected
objects were introduced by Yamaoka et al. [1, 3,] and
Morimoto et al.[4]. The system works with 20 MHz
frequency on image size of 80 X 60 pixels using 31,987 LEs,

978-1-4577-1967-7/12/$26.00 ©2011 IEEE

which represent 56% of the device logic utilities. For one
frame, it requires 13,745 cycles + 10 cycles X N to execute,
where N is the number of detected objects [1,4].

Kazuhiro and Shinichi of Image Gravity Center and
Matched Filter have implemented Planer Motion Tracking
on FPGA [5]. The implemented algorithm has achieved a
high performance of 1545.44 fps, while the logic elements
used have estimated by 30,140 LE that represent 44% of the
logic utilities. The system speed was set to 66 MHz, while
the frame size used was 64 X 64 pixel.

In a new research in 2010, Bravo et al. [6] implemented
Principal Component Analysis algorithm for motion
tracking. The main contribution of their work is to
implement the complete PCA algorithm on FPGA in contrast
to other works that use both FPGA and PCs in order to do
that. The implemented system has achieved a throughput of
121 fps with 100 MHz frequency for 256 X 256 pixels’ frame
size. The synthesized logic utility was estimated as 8,450
LEs that represents 86% of the device logic resources.

For FPGA devices manufactured using CMOS technology,
the power consumption depends on the charging/discharging
of the capacitance on gates and metal traces [7]. Thus the
capacitance is affected directly by the number of toggled
gates at any time and by the length of routs connecting the
gates. The clock frequency of the system also is directly
related to the frequency that is one of the power
consumption factors [7].

The area is considered as one of the primary physical
characteristics of a digital design [7]. Thus, area optimization
of FPGA needs to be required to estimate the performance of
the designed system as in [1].

Listed work in [1,3-6] have achieved high throughput.
However, the logic utility in average was high, too, which
increases the power consumption and the reserved area of
the FPGA as well. Another tracking algorithm called
Adaptive Hybrid Difference (AHD) by Shi et al. [8] for
software implementation has not been implemented on
FPGAs before. AHD is a background subtraction algorithm
with improved adaptive background model. AHD works
better than image difference algorithm and gives more
accurate results than mixture of Gaussian models. In most of
other tracking algorithms, operations of the frame is done
repeatedly within the current frame itself, while in AHD,
pixels’ subtractions are done among number of frames and
results are accumulated during processing. Therefore, the
logic required by AHD is simple but the process of
accumulating results through different time frames could

[745]

2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012)

potentially slow the system as a result of reading and writing
data via storage devices. To overcome this bottleneck on
speed while keeping the device utility minimum, we
employed special techniques to deal with memory accesses
and processing of frames. As a result, the proposed design
optimized the logic utilization of FPGA.

In this paper, the design and implementation of Threshold
Definer (TD) unit and Binary Image Builder (BIB) unit are
explained in section V. The pipelining technique used to
optimize the system is outlined through subsection B of
section V. Techniques used to maximize the throughput and
get the highest speed of the system are explained in
subsections A and B of section V. Results obtained are
discussed and conclusions are given in section VI.

1L ESTIMATION OF THE ADAPTIVE THRESHOLD

The adaptive threshold (AT) as proposed in [8] is
calculated by finding the means and standard deviations for
locations of all pixels of the window within 30 frames as
given by equations (1) and (2).

R
Hij :N;D @) @

l N
o === (D" (i,)~)’
\/N—l = 2)

where N is the number of frames used to find the
threshold (N=30), t is the current frame number
and D'(i, j) is the absolute value of the pixel difference
between t-th and (t-k)-th frames as illustrated in equation

Q).

D} (i,/) =|G" (i,) =G (i,) G)

G'(i, j) is the pixel value in position (i,j) in the t" frame.
The value k is used to control the quality of tracking and it
is determined experimentally according to test location
conditions such as lighting, environment, speed and the type
of moving objects [8].

Therefore, lower and upper limits of the adaptive
threshold are (4).

T =y =0y +0;] @

I1I. BUILDING THE BINARY IMAGE

Threshold is calculated at initial time to be used later to
build the binary image. The binary image is a version of the
current frame using only two values for pixel representation;
zero and one. At tracking time a black color is given to the
still pixels while a white color is given to the moving ones,
obtaining the binary image. A binary image can be built by
using (5).

[746]

k
L if(v,DiG)eT")
B'(i,)=
0 if(vDG.)eT")
s=1 (5)

where i =1,...,n, j=l,..m, t=1,2,..

Iv. SYSTEM DESIGN

The deployment model of the tracking system, which
illustrates the data flow of the input and output through the
system, is shown by Figure 1.

FPGA
ﬁ- CDD Capture —> SDRAM [+ SDRAM
Real Time Controller
Video griemy
Defining
The Adaptive
Threshold
VGA | |
Building The Controller vea
Binary mage

Figure 1. Deployment Model

Data are captured by the camera through the Charged
Coupled Device (CCD) image sensor. The captured data are
received by the FPGA via the “CCD capture” block where it
is converted to the appropriate digital form for image
processing. The formatted data is sent continuously to the
external SDRAM memory through “SDRAM controller”
block. Later on, after storing the required number of frames,
the frames start to transfer to “Define Adaptive Threshold”
block to calculate the threshold. When the threshold had
been calculated, “Building Binary Image” block starts
processing by sending the data to it, where the moving
objects are detected and given a white color and the rest of
the image is set to black. Read/write operations are
interacting between blocks and the SDRAM while
processing the threshold and building the binary image. The
final output is a binary image of the moving objects over a
frame. To observe the output of the binary image, it could
be sent to VGA monitor through “VGA Controller” block
that synchronizes the output frames.

The proposed system requires an 8 Mbytes SDRAM
memory, 640 X 480 pixels of the window size, and 16 bits
for the width of a pixel which is the size of the data row. To
store 30 frames in the memory as the algorithm requires,
18.432 Mbytes is needed. Obviously, the required space is
larger than the SDRAM space of 8 Mbytes. Thus only 6
frames at a time can be stored in the memory in addition to
the two lookup tables used to accumulate thresholds over 30
frames. Values stored in LUTs are used later to build the
binary image while new six frames are stored gradually after
discarding the processed frames.

The core units of the system are the Threshold Definer
and the Binary Image Builder units. The first calculates the
threshold while the other builds the binary image of detected
objects. Next sections show the design and architecture of

2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012)

those units in order to achieve the required throughput with
optimal device utilization.

V. PROPOSED DESIGN AND ARCHITECTURE FOR FPGA
IMPLEMENTATION

The core of the system is represented by the processing
units that generate the threshold and the binary image.
Threshold Definer and Binary Image Builder units are not
working concurrently. TD works first to determine the
threshold and saves it in a specific location in memory.
After TD units calculate the threshold, a control signal is
generated and given to the BIB unit to start functioning. BIB
starts constructing the binary image based on the current
frame and the pre-calculated threshold. Control signals are
generated by a finite state machine and are used to arrange
the data path between the two units.

Hardware Architecture of units is illustrated in Figure 2.
In addition, this figure displays the important connections
between FIFOs, SDRAM and the designed units.

Wr_FIFOs Rd_FIFOs
25 MHz/ 96 125 MHz 125 MHz 25 MHz
MHz .
?-FB=V B 256 word TO/BIB Unit To
LUT Z Dt/ :l: : ==
Frms_from_Cam SDRAM Wr_FIFOs
Frame t =
LUT_y Dt
256 word >
LUT_ >Dt2 = LUT_ yDt2
Frame t-k
'_ 256 word
LUT_ 5Dt
=._E]ZSG word
LUT_ yDt2

Figure 2. Architecture showing interactions between FIFOs SDRAM and
processing unit.

TD and BIB are simple units built of add, subtract,
comparison, AND and OR operations as shown in Figures 3
and 4.

Rd_FIFOs Threshold Definer Unit
| | | |
20 MHz
Frame t 20 MHz ; ; ; }
> To
: } Wr_FIFOs
Frame t-k | |
) | |
, » LUT_D Dt
| |
Frame t+1 ———p : 0 }
|
LUT Dt2
Frame t+1-k——p| | : : J\F’ Z
LT Dt —— 3 | | | }
| | | |
LUT_ Dt2 > ! . + ‘
| | | |
T T T |

cyci cyc2 cyc3 cyc4 cych
Figure 3. Threshold Definer unit’s Architecture

Read_FIFOs Binary lmage Builder Unit |
Frame t > I : | :
Frame t-s —Pp : : To
| | Write_FIFOs

|
| |
| |
Ol
Frame t-(s+1) = = |
| |
Mt Oyt =P T
|
|

|
|
|
|
H=0 Lyt = > Binary Image

|
|
> | | |
|
|

|

|

| |

| |

| |

Binary Image . | |
g | |

] |

| |

]
20 MHz |
cycl ‘cyc2

Figure 4. Binary Image Builder unit’s Architecture

cyc3 cycd

As in Figure 2, the SDRAM is working with a higher
frequency than that of the designed unit. FIFOs are used to
overcome the frequency differences between the SDRAM
and the units’ blocks of the design to avoid clock domain
crossing (CDC) problems. Asynchronous dual-clock FIFOs
are used where read/write operations can be done with
different clock domains. Four FIFOs are used to read data
from four different locations of the memory with clock
speed of 125 MHz. Every location represents a different
stored frame or a lookup table. From the other side, data are
moved from FIFOs into the specified processing unit with a
clock speed of 25 MHz. The speed of the system has been
set to assure an automatic synchronization for data inputs.
All four inputs are supposed to be ready at the same time
when the positive edge of the unit’s clock is reached. With
the same frequency, the obtained results are synchronized to
Write FIFOs since they stay there until they are stored into
the memory.

To save SDRAM’s access time, a burst of 256 words has
been set. Since the SDRAM has only single port with 16 bits
width, it requires 4 X 256 X (1/125M) = 8,192 ns to fill all
Read FIFOs. Since the unit has four 16-bit parallel data
ports, it needs 256 cycles to buffer in that data. Thus, with
25 MHz clock, the time required is 256 %X (1/25M) = 10,240
ns. In addition the size of FIFOs is 512 words, which allows
the memory to load the next 256 words during the data
processing of the first 256 words. The designed units will
not work faster than the SDRAM, and the FIFOs will not be
empty or full while processing a frame since:

e The required time to buffer any amount of data
from the SDRAM into FIFOs is less than the
time to take data from the FIFOs into the
designed units as just calculated above.

e The size of FIFOs is chosen to adapt two
memory burst (512 word), while the units are
reading the first burst the SDRAM is buffering
the next burst of data into the empty burst of
FIFOs.

e The SDRAM has only a single port while the
designed units have four parallel ports for input.

e The overlapped timing which is 10,240 — 8,192
= 2,048 ns, is enough to read the new 51 words

[747]

2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012)

from the memory into the FIFOs. At that time
the units are reading the last 51 words of the old
read burst. Thus the overlapping of timing will
not cause a problem since there will always be
empty spaces for the new data to be written into
FIFOs.

A. Throughput Improvement

With the proposed design of Figure 2, the throughput of
the threshold unit is 25 M / 640 X 480 X 30 = 2.7 fps and
for the Binary Image Builder unit is 25 M / 640 X 480 X 6
= 13.56 fps. In order to achieve real time conditions, the
speed has to be at least 30 fps [1]. Processing speed for the
threshold definer unit does not affect the system since it is
executed at the initial time before tracking starts. In addition,
if the threshold is re-configured to adapt to the changes of
the background; it could be re-executed at every specific
periods of time, not for every new frame. Thus, throughput
concerns must be paid only for the BIB unit since it is the
one that works at tracking time. To improve the throughput,
parallelization is used. By reducing the system frequency to
20 MHz and adding two Read FIFOs, the throughput is
increased to 21.7 fps. As shown in Figure 4, the additional
two FIFOs are used to calculate pixel difference between
two other frames in parallel with the first two FIFOs used
for frame t and frame t-k. The additional FIFOs are used to
find differences between the current frame t and one of the
six preceding frames scheduled to be subtracted from the
current frame to check that all results are belonging to the
threshold domain.

B. Pipelining Datapath

To read a new data row each clock cycle according to the
design explained in section V without data overlapping, one
of two things must be achieved through the designed units.
Either to have inner buffer inside the unit to hold the data
until it has been processed while receiving new data for the
next clock cycle or to process incoming data within one
clock cycle.

Increasing the storage units used among the FPGA by
using inner buffers does not achieve the objectives of this
research. In order to reduce the required clock cycles of
processing data through the designed units, pipelining
techniques have been used. TD unit must read from six
FIFOs, find two hybrid difference values, find the power of
them then accumulate the new results with the old results of
lookup tables. All the operations mentioned should be
executed within one cycle. By re-building the TD unit using
pipelining in a way that assures that the critical path of any
pipelined stage is taking only one cycle, the processing
latency of the unit is reduced to one cycle. Figure 5 shows
the pipelining data path that has been designed to achieve
TD’s operations within one clock cycle.

[748]

clk cycle 1
t-th Value

clkcycle 2 clk cycle 3 clk cycle 4clk cycle 5

Rd_FIFO1 bt2

(t - k)th Value

pip2SmDt{sumDt
Rd_FIFO2

Wr_lookup
_FIFO1
' Dt12

(t+ 1)th Value
pip1SmDt2

sumDt2

sumDt_old Wr_lookup

FIFO2
Rd_lookup . |
_FIFO1 sumDt2_old pip3SMDt2

pip1SmDt2 | pip2SmDt2

Rd_lookup
_FIFO2

Figure 5. Pipelining data path diagram for TD unit.

The data path depth is 5, thus it costs 5 clock cycles of
delay at the beginning of processing a new frame. Therefore,
the overall latency to find threshold over 30 frames is 5 X
30 = 150 clock cycles. However, pipelining has optimized
the required cycles from 23 M cycles to 4.6 M cycles, which
is significant for synchronous behavioral modeling.

If TD and BIB units were designed using combinational
logic, then the time can not be estimated through the number
of cycles. The time of non-pipelined combinational logic is
defined by the critical path among the whole logic. However,
in a pipelined design, the time is determined by the critical
path among the pipelining stages not over the whole unit.
We distribute operations on pipelining stages in such a way
that it takes a clock cycle for each stage to be implemented.
Thus, the critical path of one stage of pipelining is shorter
than the one generated by the non-pipelined combinational
logic implementation.

VL RESULTS AND DISCUSSION

The system has been implemented on Altera Cyclone II
device. From 33,216 logic elements (LE) of the Cyclone
device, 151 LEs (<1%) have been used. Synthesis Utility of
the designed system is illustrated in Table 1. By comparing
the logic utilization used by [1, 3-6] since their designs used
from 798 to 30,140 LEs, the proposed design costs optimal
number of logic elements and thus optimal number of gates
and device area. Choosing the AHD algorithm that does not
require complex operations while reducing timing through
pipelining, has achieved a design with optimal number of
logic gates and meets the required speed. Using FIFOs has
allowed us to adjust the different read/write speeds between
the SDRAM and the designed units.

TABLE 1
FPGA’S SYNTHESIS UTILITY oF OUR SYSTEM

Total Logic Elements LUT Multipliers
151/33,216 (<1%) — 145 for 56 0/70
combinational function
Registers Internal PLL Memory

Memory Blocks

Bits
95 8,192/483,840 2 1/4

(2%) (25%)

2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012)

Using parallel units with the pipelining has reduced the
required number of clock cycles needed to find the threshold
and building the binary image. The number of clock cycles
was reduced from 23x10 * 6 cycles to 4.3 x10 * 6 cycles for
the TD unit. Throughput was calculated using the equation

T=Sx F/C

where S is the data row size, F is the frequency and C is
the required number of cycles to implement the algorithm
[4]. Thus, the throughput of the system at tracking time is
20M /(307,200 x 3) =21.7 fps, with 20 MHz system speed.

VIL CONCLUSION

This work has presented architecture of hardware design
for object tracking units implemented on FPGA. A novel
algorithm is implemented based on AHD that on FPGA. An
optimal resources of 151 logic elements and 2 internal block
RAMs have been used. The system is evaluated in terms of
the speed and the cost on hardware resources. It achieved
throughput of 21.7 fps with a low frequency of 20 MHz.
Less than 1% of device’s area and cost are needed by the
proposed design. The real time frame rate for our system
can be achieved by reducing the frame size used for the
captured video. Thus, it may improve moving object
tracking system using optimal resources, area and power
consumption and meeting the real time conditions at the
same time.

ACKNOWLEDGMENT

The Authors would like to acknowledge the support of
the Electrical and Electronic Engineering Department of
Universiti Teknologi PETRONAS (UTP) during this study.

REFERENCES

[1] K. Yamaoka, et al., "Image segmentation and pattern matching based
FPGA/ASIC implementation architecture of real-time object
tracking," in Design Automation, 2006. Asia and South Pacific
Conference on, 2006, p. 6 pp.

[2] M. Meingast, ef al., "Automatic Camera Network Localization using
Object Image Tracks," in Computer Vision, 2007. ICCV 2007. IEEE
11th International Conference on, 2007, pp. 1-8.

[3] K. Yamaoka, et al., "Multi-object tracking VLSI architecture using
image-scan based region growing and feature matching," in Circuits
and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE
International Symposium on, 2006, p. 4 pp.

[4] T. Morimoto, et al., "An FPGA-Based Region-Growing Video
Segmentation System with Boundary-Scan-Only LSI Architecture,"
in Circuits and Systems, 2006. APCCAS 2006. IEEE Asia Pacific
Conference on, 2006, pp. 944-947.

[5]1 S. Kazuhiro and H. Shinichi, "Implementing Planar Motion Tracking
Algorithms on CMOS+FPGA Vision System," in Intelligent Robots
and Systems, 2006 IEEE/RSJ International Conference on, 2006, pp.
1366-1371.

[6] 1. Bravo, ef al., "An Intelligent Architecture Based on Field
Programmable Gate Arrays Designed to Detect Moving Objects by
Using Principal Component Analysis," Sensors 2010, pp. 9232-9251,
2010.

[71 S. Kilts, Advanced FPGA design: architecture, implementation, and
optimization: Wiley, 2007.

[8] S.-x. Shi, et al., "A Fast Algorithm for Real-time Video Tracking," in
Intelligent Information Technology Application, Workshop on, 2007,
pp. 120-124.

[749]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

