Simultaneous Fault Diagnostics for Three-Shaft Industrial Gas Turbine

Salilew, W.M. and Gilani, S.I. and Lemma, T.A. and Fentaye, A.D. and Kyprianidis, K.G. (2023) Simultaneous Fault Diagnostics for Three-Shaft Industrial Gas Turbine. Machines, 11 (8). ISSN 20751702

Full text not available from this repository.
Official URL:


The study focused on the development of -gas turbine full- and part-load operation diagnostics. The gas turbine performance model was developed using commercial software and validated using the engine manufacturer data. Upon the validation, fouling, erosion, and variable inlet guide vane drift were simulated to generate faulty data for the diagnostics development. Because the data from the model was noise-free, sensor noise was added to each of the diagnostic set parameters to reflect the actual scenario of the field operation. The data was normalized. In total, 13 single, and 61 double, classes, including 1 clean class, were prepared and used as input. The number of observations for single faults diagnostics were 1092, which was 84 for each class, and 20,496 for double faults diagnostics, which was 336 for each class. Twenty-eight machine learning techniques were investigated to select the one which outperformed the others, and further investigations were conducted with it. The diagnostics results show that the neural network group exhibited better diagnostic accuracy at both full- and part-load operations. The test results and its comparison with literature results demonstrated that the proposed method has a satisfactory and reliable accuracy in diagnosing the considered fault scenarios. The results are discussed, following the plots. © 2023 by the authors.

Item Type: Article
Impact Factor: cited By 0
Depositing User: Mr Ahmad Suhairi Mohamed Lazim
Date Deposited: 04 Oct 2023 12:43
Last Modified: 04 Oct 2023 12:43

Actions (login required)

View Item
View Item