Technology Platform: APPLICATION OF IT SYSTEMS

Technology Cluster: INTELLIGENT SYSTEMS

Hardware Implementation of Feedforward Multilayer Neural
Network Using the RFNNA Design Methodology

Fawnizu Azmadi Hussin', Noohul Basheer Zain Ali and lvan Teh Fu Sun
Universiti Teknologi PETRONAS,
Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan, Malaysia.
'fawnizu@petronas.com.my

ABSTRACT

This paper proposes a novel hardware architecture for neural network that shall be named Reconfigurable
Feedforward Neural Network Architecture (RFNNA) processor [1]. This neural network architecture aims to
minimize the logic circuit as required by a fully parallel implementation. The Field-Programmable Gate Array
(FPGA)-based RFNNA processor architecture proposed in this paper shared logic circuits for its hidden layer
neurons and could be reconfigured for specific applications [2,3], which required different neural network
structures. This was achieved by storing connection and neuron weights for the multiple hidden layers in the
EPROMs and utilized the hidden layer neuron’s logic circuits iteratively for multiplication, summation and
evaluation purposes. In this paper, training of neural network was not considered and was performed offline
using software. The resulting weights and biases were then loaded into the RFNNA processor’s EPROMs for
implementation [1]. The RFNNA processor was tested with the XOR non-linear problem using a 2-3-3-3-1
architecture.

Keywords: Artificial intelligence, Neural Network Processor, Field Programmable Gate Array, FPGA, Reconfigurable,
Hardware Implementation, RENNA, Feedforward Multilayer

INTRODUCTION

Neural information processing is an emerging new
field, providing an alternative form of computation for
demanding tasks. Examples of neural network
applications are character recognition and stock
market forecasting [4]. Neural networks can be
implemented using either software which is based on
a central processing unit or on a dedicated hardware,
which can process inputs in parallel and decentralized
fashion [5]. The latter is a neural network processor,
which can yield tremendously fast computations as
required by neural network applications. Due to the
heavy computation demands of a neural network,
hardware based solutions are preferred.

A neural network is made up of a collection of neurons,
which are arranged in layers known as hidden layers.
Each neuron is an individual processing unit that
performs summation and has an activation function
that normalizes the result of the summation before
passing the value to other neurons in the subsequent
hidden layer. The number of neurons in a layer is
arbitrary and the number can be between 2 and 200
neurons or even more depending on the application
[6].The number of hidden layers also depends on the
application for which the neural network is designed.
The allocation of resources between number of
neurons and hidden layers are inversely proportionate.

This paper was presented in the International Conference on Neuro-Computing and Evolving Intelligence,

Auckland University of Technology Park, Auckland, New Zealand, 13-15 December 2004.

m PLATFORM VOLUME FOUR NUMBER TWO JULY - DECEMBER 2004

Technology Cluster: INTELLIGENT SYSTEMS

Figure 1 illustrates a typical feedforward neural
network structure with two inputs, two hidden layers
with three neuronsineach,and one output. The dark
circle refers to a deposit of biased values, which is
unique for each neuron that it is connected to.

Input Layer

| Hidden Layer |
I #1 #2 I

Output Layer

Figure 1: A 2-3-3-1 Neural Network Architecture

Currentimplementation of a neural network processor
requires large amounts of logic resources since it is
implemented with a fixed structure, allocating
hardware resource for each and every neuron and
connection weight.

In order to improve the hardware implementation of
the neural network structure in Figure 1, this paper
proposes a novel architecture called Reconfigurable
Feedforward Neural Network Architecture (RFNNA)
based on a paper by Zain Ali,et al.[1]. The RFNNAis a
design methodology for hardware implementation of
neural networks. The main advantage of using the
RFNNA design methodology is that it can reduce the
amount of logic gates used for a fully parallel neural
network [7,8] of multiple layers to just only one single
hidden layer by iterating the use of one hidden layer’s
resources. Theoretically,a neural network design using
RFNNA can have infinite number of hidden layers;
though this is constrained by the amount of resources
allocated to store connection weights and biases.

Technology Platform: APPLICATION OF IT SYSTEMS

ARCHITECTURE OF RFNNA PROCESSOR

Figure 2 below shows a high level view of the RFNNA
processor. The Multiplication/Summation Block
refered to an individual neuron. There were 3 neurons
altogether, catering for the 2-3-3-3-1 architecture, that
is, the processor has 2 inputs, 1 output and 3 hidden
layers with 3 neurons each. The block diagram as in
Figure 2 was broken down into 11 functional modules
asin Figure 3 for the actual design. Selected modules
are described as follows.

Figure 2: RFNNA Processor for XOR Problem

Input Module

This module served as buffer and multiplexer to
external inputs as well as outputs from the activation
function. External inputs were first converted into its
equivalent value for arithmetic computation. The input
module accepts and assigns values to external inputs
to be stored into the multiplier buffers concurrently.
However the same buffers were written sequentially
when data was passed from the activation function.
No conversion was required for data from the
activation function. Besides receiving and storing data,
the Input Module was also required to correctly
broadcast the values in its buffers onto the
multiplicand bus.

Bias and Weight EPROM Module
There were three Bias and Weight EPROM Modules in

the designed processor. Each module was similar to
the other, differing only in the weight and bias values

VOLUME FOUR NUMBERTWO JULY - DECEMBER 2004 PLATFORM ﬂ

Technology Platform: APPLICATION OF IT SYSTEMS

they carried. Each module was dedicated to one
neuron and stores bias and weight values for three
hidden layers and one output layer. As in the Input
Module, weight values were sequentially passed to the
Neuron Module. Each module had an internal counter
which told the module which weight value is to be
passed on. External signals to the modules told which
layer the bias and weights value it could select from.
The bias values stored in the modules were in twos
complement format while weight values were stored
in signed magnitude integer. The fraction size for the
weight and bias values were different. The fraction size
for weight values was equivalent to 0.01 (11 bit word)
whereas the fraction size for bias values was 0.0001
(21 bit word).

Neuron Module

Multiplication for the neuron module used the Add
Shift Right (ASR) algorithm. This algorithm was suited
for unsigned binary multiplication,which was the type
of data presented to it. While the multiplication
algorithm involved unsigned binary integer,a register
was used to store the sign bit of the multiplicand. The
sign bit acts as a flag as to whether the multiplication
result needed to be complemented before it is
summed up with the bias value stored in a 21 bit wide
outputregister.

There was only one multiplier designed into each
neuron, therefore multiplier and multiplicand values
provided by the Input Module and the Bias and Weight
EPROM Module were multiplied and summed up
sequentially with the bias value which was directly
stored in the 21 bit wide register. The use of only one
multiplier per neuron was justified with the amount
of logic saved as compared to the time used to
complete iteration per hidden layer. The time factor
for multiplication was now prolonged corresponding
to the number of neurons N per hidden layer.
Comparatively, if a fully parallel implementation were
to be used, the number of logic gates for the
multiplication portion would be N2 as much. The
loading of values would different for the starting of a
hidden layer and the loading of values thereafter. Bias

Technology Cluster: INTELLIGENT SYSTEMS

values would only be loaded once for every hidden
layer into the Neuron Module whereas multiplier and
multiplicand values were loaded during each iteration.

Activation Function LUT Module

The LUT, which was implemented and declared as an
EPROM block in the FPGA device itself,contained many
redundant entries. Addressing the LUT was an 8-bit
input, which had 256 entries. Using mathematical
analysis, it was possible to reduce the EPROM usage
from 256 x 8 bit word entries to 63 x 8 bit word entries.
This was because there were only 50 unique data that
was being accessed in the LUT ranging from decimal
equivalent of 50 to 99. Several of the combinations
could be grouped together for an entry thus reducing
the need for individual access for equivalent results.

The inputs from the Number Representation Converter
Module were used to address the activation function
LUT as well as to note the sign of the input argument.
As was mentioned before, the LUT table could only
address values from 50 to 99 corresponding to the
sigmoid range of 0.50 to 0.99. These values were only
valid for positive arguments. If the sign of the
argument were negative, some manipulation of the
LUT result had to be performed. The LUT equivalent
would be subtracted from 100 to produce the correct
answer.

Control Unit

The Control Unit for this neural network processor had
10 distinctinputs and 10 distinct outputs. The Control
unit was able to guide the rest of the modules to
function as intended at the right time.

The Control Unit provided control signals to all
modules except for the Number Representation
Converter Module and the Activation Function LUT
Module.The system was designed such that in case of
a reset, the whole processor could be set back to its
initial state.

n PLATFORM VOLUME FOUR NUMBER TWO JULY - DECEMBER 2004

Technology Cluster: INTELLIGENT SYSTEMS

The Ready flag, which was connected to an external
output pin, notifies the user whether the processor was
available for processing or when processing was being
performed.

ORGANIZATION OF RFNNA PROCESSOR
The modules described earlier were arranged and

connected as shown in Figure 3. There were a total of
5 external inputs and 2 external outputs.

- 1
Wl —H T ra@Emt—= = e e, e o
In2 ——4] o mi = 6] = =
o paf TN |
I = " I_Il
— — i] -1
[E1] :'5'-
i i
- L B 1 -
Fio Lot 5] 1 o P 2

Figure 3: Block diagram for the RFNNA Processor

(1) Input Module
(2) Input Module Counter
(3) Bias and Weight EPROM Module
(4) Bias and Weight Counter Module
(5) Neuron Module
(6) Neuron Output Multiplexer Module
(7) Neuron Output Multiplexer Counter Module
(8) Number Representation Converter Module
(9) Activation Function LUT Module
(10) Output Threshold Module
(11) Control Unit

The Input Module (1) took in inputs from external
inputs and also from the output of the Activation
Function LUT Module (9). The output from the Input
Module was simultaneously fed into the 3 Neuron
Modules (5a,5b,5¢) via a 7-bit wide data bus. Individual
Bias and Weight EPROM Modules (3a, 3b, 3¢) were
assigned to each Neuron Module, providing two types
of inputs to it; bias values (21 bit) and weight values
(11 bit).

Technology Platform: APPLICATION OF IT SYSTEMS

Multiplication of inputs and weights were performed
sequentially and the result summed up after each
iteration. By employing the ASR multiplication
algorithm, all multiplication tasks in the neurons were
completed simultaneously, given the same multiplier
value (input) regardless of what the multiplicand value
(weight) was. Therefore only one of the modules
needed to provide feedback to the Control Unit (11)
as all other neuron computations were synchronized.

There was only one Activation Function LUT Module.
Therefore each Neuron Module output had to take
turns to access the activation function resources. This
task was performed via the Neuron Output Multiplexer
Module (6) which multiplexed between the 3 neurons.
The output of the Activation Function LUT Module was
directed to 2 modules, Input Module and Output
Threshold Module (10).

A neural network’s neuron encompasses the summing
up of weighted inputs and passing the value through
the activation function. However for this design, the
individual neuron’s function included the
multiplication of input values with the connection
weights. The passing of summation results for each
neuron into the activation function were detached into
a separate process.

The Control Unit through the external output Ready
notified the user whether the value of the Out pin was
valid or otherwise.

EXPANDABILITY OF RFNNA PROCESSOR

Input values were passed to the Neuron Modules
through a multiplicand bus (refer Figure 2). This bus
when connected to external outputs could be used to
expand the capacity of the RFNNA processor. This
expandability adds to the versatility of the RFNNA
processor making it possible to be used for
applications which require more neurons per hidden
layer that can be fitted into a single FPGA chip [1].
Figure 4 illustrates how multiple RFNNA processors can
be connected together for parallel processing.

VOLUME FOUR NUMBERTWO JULY - DECEMBER 2004 PLATFORM “

Technology Platform: APPLICATION OF IT SYSTEMS

REMMA

|- Froceszar 1 .
y RFMMA

H y Processor 2 .
RFEMMA

[Processor 3 | |

Figure 4: Parallel Processing of RFNNA Processors

CONCLUSION

The paper describes the advantages of a novel
hardware architecture for neural network called
RFNNA. RFNNA is a design methodology to reduce
circuit area requirement in an integrated circuit. The
optimization is achieved through reiteration of a single
hidden layer. This approach enables the RFNNA
processor to cater for applications, which require any
number of hidden layer neurons. The versatility of the
RFNNA processor is improved by allowing it to be
connected in parallel thereby permitting a larger
number of neurons per hidden layer.

The weight and bias values are stored within the
processor’s EPROM itself, thus limiting the number of
hidden layer weights and biases that can be stored.
For the RFNNA processor to cater for any application
in a single chip, the design must have an external RAM
to store information for weight, bias and network
connectivity information. Thus when the processor is
need to be run different applications,only RAM values

Technology Cluster: INTELLIGENT SYSTEMS

need to be reinitialized. This general-purpose design
would also be suitable for hardware implementation
using Application Specific Integrated Circuits (ASICs)
which is capable of faster processing speeds and a
larger neuron count.

NOMENCLATURE

H = Inertia constant

WR?2 = Wight of rotating parts of generating unit
(Ib) multiplied by the square of radius of
gyration (ft)

RPM = Rotation per minute

H, = Inertia constant of nth generating unit

RPM, = Rotation per minute of nt" generating unit

kvVA = Apparent power

P = Decelerating power in per-unit of
connected kVA

df/dt = Rate of frequency decline

GTG Gas turbine generator

STG = Steam turbine generator

SS = Substation

MISS = Main intake substation

B = Circuit breaker

tip = Trip time

toick-up= Pick up time

REFERENCES

[11 Zain Ali,N.B., IvanTeh F.5.2004, Reconfiguring Logic Resources
of Single Hidden Layer to Accommodate Multiple Layer Neural
Network Applications,in Proceedings of the 2nd International
Conference on Artificial Intelligence in Engineering and
Technology.

[21 J.Zhu, GJ. Milne and B.K. Gunther, Towards An FPGA Based
Reconfigurable Computing Environment for Neural Network
Implementations, in Proceedings of IEE Conference on
Artificial Neural Networks, 1999: p.661-666.

[31 Eldredge, J.G. and B.L Hutchings, Design Methodologies for
Partially Reconfigured Systems, in Proceedings of IEEE
Symposium on FPGAs for Custom Computing Machines,
1994:p.78-84.

[4] Callan R. 1999, Essence of Neural Networks, Hertfosrdshire,
Prentice Hall Europe.

H PLATFORM VOLUME FOUR NUMBER TWO JULY - DECEMBER 2004

Technology Cluster: INTELLIGENT SYSTEMS

[5]

(6]

[7]

(8l

Szabo T., Feher B. and Horvath G. 1998, Neural Network
Implementation Using Distributed Arithmetic, in Proceedings
of the 2nd International Conference on Knowledge Based
Intelligent Electronic Systems.

Haykin S. 1999, Neural Networks — A Comprehensive
Foundation, Prentice Hall New Jersey.

Sundararajan N.,Saratchandran P. 1998, Parallel Architectures
for Artificial Neural Networks, |IEEE Computer Society, Los
Alamitos, California.

Gschwind, M.V.Salapura.and O.Maischberger, Space Efficient
Neural Network Implementation, in Proceedings of the 2nd
ACM Workshop on Field Programmable Gate Arrays, 1994.p.
23-28.

Technology Platform: APPLICATION OF IT SYSTEMS

Fawnizu Azmadi Hussin is a faculty
member at the Universiti Teknologi
PETRONAS, Malaysia.He obtained his BScin
e il Electrical Engineering, specializing in
. Computer Design from the University of
ﬂg‘ Minnesota, USA and subsequently his
y MEngSc in Systems and Control from the
\ University of New South Wales, Australia. His
research interests are in VLS| design and
testing, FPGA prototyping of neural network architecture,
encryption algorithms and simulation of a dynamic system. He is
currently pursuing his PhD in VLSI Design for Testability at Nara
Institute of Science and Technology, Japan.

Noohul Basheer Zain Ali is a faculty
member at the Universiti Teknologi
PETRONAS, Malaysia. He obtained his MSc
in Computer and Systems Engineering from
Rensselaer Polytechnic Institute, USA Prior
to that he graduated from University of
Bradford with BEng (Hons) in Electronics,
Computer and Communication
Engineering.His research interests are in the
area of VLSI Design and Testing, FPGA prototyping for Artificial
Intelligence application and Encryption. He is currently pursuing
his PhD at the University of Southampton, UK.

Ivan Teh Fu Sun is a design engineer at Intel technology, Penang,
Malaysia. He obtained his BEng (1st Class Hons) from Universiti
Teknologi PETRONAS, Malaysia.

VOLUME FOUR NUMBERTWO JULY - DECEMBER 2004 PLATFORM ﬂ

