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Abstract

Background and purpose

Ultrasound imaging is a very essential technique in medical diagnosis due &intsdafe,
economical and non-invasive nature. Despite its popularity, the US imagwsyer, are corrupted
with speckle noise, which reduces US images qualities, hampering image étdiqor and
processing stage. Hence, there are many efforts made by researfbrasulate various despecklin
methods for speckle reduction in US images.

Methods

In this paper, a subspace-based speckle reduction technique inwtigastages is proposed. The
fundamental principle of subspace-based despeckling technique isvercmultiplicative speckle
noise into additive via logarithmic transformation, then to decompose the veetoe 8f the noisy

and estimating the clean image from the remaining signal subspace. Lineattiestiofidhe clean
image is derived by minimizing image distortion while maintaining the residual noisgyehelow
some given threshold. The real US data for validation purposes wguired under the IRB protocg

Results

Experiments are carried out using a synthetically generated B-mode ulicaBoage, a computer
generated cyst image and real ultrasound images. The performanespobposed technique is
compared with Lee, homomorphic wavelet and squeeze box filter (SBF)s t&rnoise variance
reduction, mean preservation, texture preservation and ultrasoupelattéag assessment index
(USDSAI). The results indicate better noise reduction capability with the sintlilatgges by the
SDC than Lee, Wavelet and SBF in addition to less blurry effect. With thecessl scenario, the
SDC, Lee, Wavelet and SBF are tested with images obtained from raw radigehcy (RF) data.
Results generated using real US data indicate that, in addition to good ¢emfnasicement, the
autocorrelation results shows better preservation of image texture by SIDC¢e, Wavelet and

image into signal and noise subspaces. Image enhancement is achiewelingythe noise subspac

(200210851-7) at the University of California Davis, which is also &iaat with NIH requirements.
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Conclusion

In general, the performance of the SDC filter is better than Lee, WavaleésBF in terms of noise
reduction, improvement in image contrast and preservation of the awttatarn profiles.
Furthermore, the filter required less computational time compared to Lee|édaad SBF, which
indicates its suitability for real time application.
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Introduction

Ultrasound (US) imaging is one of the most commonly used medical imaging dukafymostic pur-
poses to its many advantages such as portability, the noninvasive netatieety low cost and presents
no radiation risk to patient. These features have made the US imaging as therevadéent diagnostic
tool for health practitioners over other more sophisticated imaging technégeesas CT scan, MRI or
PET. Unfortunately, like SAR, US images exhibit a speckle pattern and itstist@timodel is identical
to single-look SAR amplitude signals. Speckle in ultrasound has advees# igffsuch a way it causes
reduction in image contrast resolution. In [1], Bamber and Daft showsietkle in US images cause
reduction of lesion detectability by approximately a factor of eight.

An US machine works by introducing into the body of interest a low-enetdgepof sound with fre-
quencies typically between 3 and 30MHz by a transducer probe thatestioh patients’ skin surface.
Upon travelling through the body tissue, some of the pulses get attenuailecsane small portion of
the pulse energy are scattered back to the probe. The scattered pulsersatived by the same probe
to produce echo signals which are processed to form two-dimensionad&ralgo known as sonogram.
This two-dimensional anatomical maps are called B-mode (brightness) in®jges [

In principle, US images provide information about internal tissue structuingsh resulted from inter-
action between anatomical tissues with the transmitted ultrasound pulse. Dueraotiotebetween
ultrasound waves with tissue, backscattered echo signals are produttedform of reflection, scatter-
ing, interference and absorption. These echo, resulted from culser@mation of ultrasound scatterers,
carry information about the tissue under investigation. The nature ofest®ummation of such signals
gives rise to an interference pattern known as speckle [3].

The despeckling techniques applied in US and SAR imagery can be clagsifiddur main groups,
namely, linear and non-linear filters, adaptive speckle filters, wavetseddters and anisotropic diffusion-
based (AD) approach. In linear filtering technique [4,5], the multiplicatpreckle noise is first con-
verted into an additive noise by applying logarithmic transformation to the &akokage followed by

a Wiener filter in order to reject the resultant additive noise. The delgakirhage is fully recovered by
applying exponential transformation onto the output of Wiener filter. Thenigae, which convert the
multiplicative speckle noise into an additive one, are commonly referredrastorphic despeckling
methods. The Wiener filter is the oldest approach to image denoising, is optitha sense of mini-
mum mean-square error (MSE) and is space invariant linear estimatorsigtred for images degraded
by additive white noise.

The nonlinear filters are possible alternative to the standard linear filtestigtha most popular one is
the median filter. It has the advantage of preserving edges and is ¥ecgivef at removing impulsive
noise. The median filter sorts the intensities in the neighbourhood window oéflence pixel and



calculates the median value of the sorted data. The denoised pixel is oltginsplacing the original
reference pixel value by the median value calculated for the particuldsmailgood window [6-8]. The
main problem is that the median filter would blur edges and tiny details.

Wavelet-based denoising techniques continue to generate great iare@sj the computer vision and
image processing community. Some of the proposed wavelet-based sphkekdedfie presented in

[9-15]. The success of the technique is due to the fact that in the walgatedin, the noise is uniformly

spread throughout the coefficients, while most of the image information ceotrated in few significant

ones. In other word, the wavelet-transformed images tend to be sparsersequently, noise removal
can be achieved by properly suppressinghoesholding the small coefficients that are likely due to
noise. The wavelet-based denoising techniques involve three major $jgpsiform a 2-D wavelet

transform, 2) modify the noisy coefficients using a shrinkage functiod,3rperform a 2-D inverse

wavelet transform [16,17]. In general, the most critical step in wavedabiding techniques is the
modification of wavelet coefficients. The classification of the differenetgp wavelet denoising is

typically based on it different approach in modifying the noisy coefficients

The adaptive speckle reducing filters such as Lee, Kuan and Frobeapplicable to both US and SAR
images. The methods are developed based on multiplicative model of speidde he methods are
based on two assumptions, 1) the recorded image and the speckle naisgistieal independence [18],
and 2) a constant ratio of noise standard deviation to mean throughout e ifttee second assumption
is valid in homogeneous regions. Each of these filters achieved spegution via spatial filtering in a
square-moving window known as kernel. The filtering is based on the staltigtiationship between the
centre pixel and its surrounding pixels within a processing window. Thedlwindow size aré& x 3,

5 x 5, and7 x 7. With the window-based techniques, the selection of window will greatlyceffethe
quality of the processed image. If the window is too small, the noise filteringittigors not effective,
where as if the window is too large, subtle details of the image will be lost in tharfiterocess.

The squeeze box filter (SBF) which can be classified as an iterativeiqeehmeduces speckle noise
by suppressing outliers as a local mean of its neighborhood [19,20kdBasthe fact that speckle is
a stochastic process where outliers inevitably occurs, the proposeda&idves noise reduction by
iteratively removes the outliers. Specifically, the image pixel outliers areatkfmbe local minimums
and local maximums determined fronmBax 3 window. Each outlier will be replaced by a local mean
determined from a window centered on the outlying pixel. The outlier pixelevedunot used in com-
puting the local mean. After all the outliers are replaced by the local meangtabess is repeated until
a predetermined number of iteration is reached or until convergence isedttdim[19], experimental
results showed that the SBF improves the image quality in terms of contrastoemhent, structural
similarity and segmentation result. Although an effective speckle reductiergBir however still has
artifacts in the form of blurred edges and irregular intensity pattern aredges [21].

In this paper, a subspace-based technique to reduce the specklmrg&émages, is proposed. Fun-
damentally, the proposed technigue is an extension of the original wonklohEn and Van Trees [22],
in speech enhancement towards 2-dimensional signals. The undertineple is to decompose the
vector space of the noisy image into a signal-plus-noise subspace andiskesnbspace. The noise
removal is achieved by nulling the noise subspace and controlling the nistsbution in the signal
subspace. For white noise, the subspace decomposition can theoregcpdyftrmed by applying the
Karhunen-Loeve transform (KLT) to the noisy image. Linear estimatorettban image is performed
by minimizing image distortion while maintaining the residual noise energy below so@e thresh-
old. For colored noise, a prewhitening approach prior to KLT transfoma, generalized subspace for
simultaneous diagonalization of the clean and noise covariance matricdse caed. The fundamen-
tal signal and noise model for subspace methods is additive noise elated with the signal. But,
in US images the noise is multiplicative in nature, so a homomorphic framework sakestage of



logarithmic transformation, in order to convert multiplicative noise into additdieen

The paper is organized as follows. Firstly, the statistic of speckle noise immd§es is described.
Secondly, the principle of subspace and how it can be extended tdspetse removal is presented. In
specific, this second section covers the proposed subspace tecandjite implementation in speckle
noise filtering followed by experimental results to determine optimum value ofalcag multiplier.
The subsequent section presents the experimental results to validateatursiteethe performance of
the proposed filter. The performance evaluation of the proposed teghisdglivided into three main
categories, 1) using simulated B-mode US images 2) using Field Il generatgdsraad 3)using real
US images in comparison to Lee filter, wavelet filter [23,24] in homomorphic frareand SBF
technique [19]. The final section concludes this paper.

For clarity, an attempt has been made to adhere to a standard notatioreaittmmvLower case boldface
characters will generally refer to vectors. Upper case charactergemiéirally refer to matrices. Vector
or matrix transposition will be denoted using” andR™*™ denotes the real vector spacemfx m
dimensions.

Signal and noise model in ultrasound images

Consider matridG to be the noisy observation of the original imagé, Let denote,,, and¢, as the set
of corrupting multiplicative and additive speckle noise components, régplgc The noisy US image
can be expressed as [4,9,11,25]

G=Wé&n+&.- (1)

Generally, in medical US images, the effect of the additive speckle naisd @s sensor noise) is
considerably less significant than the multiplicative component [4,9,11,2K]ngd the assumption that
the speckle is fully developed and the additive term can be neglectedia(ig can be expressed as

G =Wn. )
Applying the logarithmic function to both side of (2), we get

log(G) = log(W) + log(&m).- 3)

Expression (3) can be rewritten as
Y =X+ N, 4

whereY, X andN are the logarithms of7, W and¢,,, respectively.

The statistical theory to describe US speckle are drawn from the literattleises optic by Goodman
in [26]. Goodman mathematically models speckle as an accumulation of a largenaftomplex
phasors, to be denoted as= a + jb, also known as complex random walk. These complex phasors,
can have either constructive or destructive relationship with each @tpptying central limit theorem
to the random walk will results in a signal having two-dimensional Gauss@rapility density function
(PDF) in the complex plane,

1 2|2
PZ (Z) = 2702 €xp (_|21)|2> ’ (5)

wherev? is the variance of the Gaussian distributed in-phase/quadrature (IQpoemis. Equation (5)
is simply the product of two independent Gaussian density functions withmaean and variance?
and referred to as a circular Gaussian probability density function. Ukmdépw of conservation of



probability, the PDF of speckle phasors magnitudles v/a? + b2 is given by

A A?

For the intensity format] = A2, the PDF is given by [27]
1 I?

The equation in (6) and (7) are respectively, known as Rayleigh PDExponentional PDF. In B-mode
US signal, the magnitudéd is the quantity of interest since the image is form using envelope detection,
in which the phase components are removed. The histogram of the pixelsiogkoeous area marked
as “A’ is shown in Figure 1 which shows a distribution consistent with Rayldigtribution.

Figure 1 An US image (a) and histogram of the homogeneous region A

The subspace-based techniques for noise reduction

In this section, we derive the linear spatial-domain constraint (SDC) estinvaltich minimizes the
image distortion while constraining the energy of residual noise. The foedtal principle is to decom-
pose the vector space of the noisy image into a signal subspace andulgipace. The decomposition
of the space into two subspaces can be done using either the singuladeatraposition (SVD) or
the eigenvalue decomposition (EVD). The noise removal is achieved bygtlinnoise subspace and
controlling the noise distribution in the signal (signal + noise) subspacebaym with derivation of
time (spatial) domain constraints estimator which minimizes the image distortion whileaioimgirthe
energy of residual noise. Using the sigdéland an additive noise modél, the noisy image matrix
can be expressed 85 = X + N. In this case, the error signalobtained from the linear estimation,
X = HY is given by

e=X—-X=(H—-D)X+HN =ex +ep, (8)

wheree x represents the image distortion, andrepresents the residual noise [22]. Defining the energy
of the image distortiom 2, and the energy of the residual nois¢® as

ex2=tr (E [e§ex]) , 9)
enZ =tr (E [6%6]\[]) , (20)

whereFE [] is the expected value, the optimum linear estimator can be obtained by solvirdjdaeérfg
spatial-domain constrained optimization problem [22], [28]

1
. 2 . 2
1M1 EXSUb ectto—e < I I
Hl J m N — O-’ ( )

The optimum estimator is the sense of Eq. (11) can be found using the KudkeiThecessary con-
ditions for constrained minimization [29]. It involves solving a constrained miration problem by

applying the method of Lagrange multipliers [30]. Specificalliyis a stationary feasible point, if it
satisfies the gradient equation of the Lagrangian,



L(H,\) =& + A& —mo) =tr ((H ~I)Rx (H — I)T) +A(r (HRyHT) —mo),  (12)
where)\ > 0 is the Lagrange multiplier, and
Mé —mo) =0for A > 0. (13)

The solution to Eq. 12 is a stationary feasible point that satisfies the gradjeationV ;; L(H, \) = 0,
thus we obtain
VuL(H,\)=2(H —-I)Rx +2\HRyN =0, (14)

thus,
Hspo = Rx<RX + )\RN)_l. (15)

Since the noise is assumed to be white, tiep = v21 wherev? is the noise variance anflis the
identity matrix. Hence, the solution for the optimum estimdi@p is given as

Hspe = Rx(Rx + M2I)~L. (16)

Before the final form of the optimal estimatéfspc is considered, it is worthy to note that there is
a strong empirical evidence indicating that the transformed covariance roatmeost images by the
eigenvectors of th& x have some eigenvalues small enough to be considered as zeros. Thésthatan
the number of basis vectors for the pure image is smaller than the dimensionextibss/

To verify this key statement, we plot the eigenvalues of two ultrasound imdgeaptured from a
patient, as shown in Figure 2. The images shown in Figure 2 correspondigmamd and benign tumor
obtained from biopsy-verified studies. The image sizZEbis6 x 360 pixels where the x-axis giving the
lateral sizes and the y-axis giving the axial sizes. Specifically, for the naaligumor, the patient was
diagnosed with IDC (Invasive Ductal Carcinoma) and for the benign tutherpatient was diagnosed
with fibroadenoma. The RF frames are recorded at 17 frame/secoraltatel of 12 seconds of data
are acquired using a linear transducer array from the Arffa@ystem. In order to obtain the B-mode
ultrasound images, the URI Offline Processing Tools (URI-OPT) run &mlMB platform is used to
convert the RF data to the B-mode images as shown in Figure 2.

Figure 2 Uncropped B-mode ultrasound images of breast tissue, rfignant tumor (left) and be-
nign tumor (right). Courtesy of Ultrasonic Imaging Laboratory at University of Illinois at Urbana-
Champaign.

The eigenvalue plot in Figure 3, it shows that some of the eigenvalues aknf&grare close to zero,

which indicates that the energy of the clean image is distributed among a sfiliisetoordinates and

the signal is confined to a subspace of the noisy Euclidean space. $imgis@eigenvalues are strictly
positive, the noise fills in the entire vector space of the noisy image. In otbet, the vector space
of the noisy image is composed of a signal-plus-noise subspace and a mm@nfaey noise subspace.
The signal-plus-noise subspace or simply the signal subspace comisess of the clean image as
well as of the noise process. The noise subspace contains vectoes mbite process only. Using
eigendecomposition dtx = UAx U7, Eq. (16) can be expressed as

Hspo = UAx (Ax + M2I) " UT, (17)



Figure 3 Eigenvalue profile of Rx, generated from the US images in Figure 2.

The link between the maximal oriented energy and the signal subspacd as Wetween the minimal
energy and the noise subspace were established in [31]. Using theetgemposition analysis [31], in
whichtheAx; = Ay,; — v2, we can improve the form of model matris pc in Eq. (17) by removing

the noise subspace and estimating the clean image from the remaining prifgiphbksibspace

Hspo = U1 Axy (Axy + A2T) T UT. (18)

In the implementation of SDC, a proper selection of signhal subspace dimenai@hLagrangian mul-
tiplier, A are critical in order to achieve the best noise reduction technique. Bspace dimension,
a method based on eigenvalues is proposed in [31,32] whereas thengiagranultiplier is to be em-
pirically determined. As with any other noise filtering technique, the value naisance needs to be
estimated. In this case, the noise variance can be estimated using the last ¢éralinfthe smallest
singular value as outlined in [31].

When dealing with ultrasound data, the SDC is implemented in homomaorphic fralnevhere the
noisy image is first log-transformed prior to SDC filtering. This transformatitdihconvert the multi-
plicative nature of the speckle to an additive on. The final form of thpetdded image is recovered
by performing antilog on the output of the SDC filter. The implementation detaiD& 8re given as
follows,

1. Apply the homomorphic transformation to the noisy images log(G).
Estimate the noise variane€,.

Compute the dimension of signal subspace,

A wo D

Using the estimatedin step 3, apply eigendecomposition &%;, then extract the basis vectors
of signal subspac¥;, and their related eigenvaluéé/@ = Agﬁ) — 2.

n

5. Select the best value af then compute the optimum linear estimator,
Hspe = UiAxy (Axy + M) UT. (19)
6. Compute the clean imag&, = Hgpc - Y.
7. Reverse the homomorphic effect by taking the exponential aktlas follows
W = 10%. (20)

In essence, reversing the homomorphic effect in step 7 converts thethogia form of the filtered
image to a linear form prior to image display.

Optimum value of the lagrange multiplier

To find the besi value for SDC, a test image made up is created as shown in Figure 4. Timadgst
is made up of synthetic patterns, specimens from Broadatz texture set,tgeahshapes, and some
alphabets with different size. In particular, the bright and dark striptherupper left corner closely
resemble clinical ultrasound images of carotid artery at the far wall [3B8¢ t€st image is selected as



it combines different critical features of typical US images. The Broattatzire is to assess on how
well the filter can preserves the texture of the original image. Besidesjfteeedt geometrical shapes
and alphabets of different sizes are included in order to evaluate theifiability in preserving edges
and fine details of the image. Lastly, the selection of bright and dark stripsltdsely resemble clinical
US images of carotid artery is to assess the filter capability in preservingtdrg asall and its edges.
The experiment is conducted by corrupting the test image speckle noisgiafice extends from 0.03
to 0.05 and\ ranging between 1 and 105. The signal-to-noise value (SNR) calcukaited a

2
v
SNRyp = 10log; MigsE (21)

where MSE represents the mean-square error, given by

MSE= S S (X (i)~ Y (0.)) (22)

i=1 j=1

is used to indicate the denoising effect of the SDC. The results are shdviguire 5.

Figure 4 Test image.

Figure 5 SNR of the despeckled test image in 4 obtained at differerk values.

The results in Figure 5 show that the SDC is not too sensitive to the seledterlofathe Lagrange
multiplier. Notably, the results in Figure 5 show that for high noise level, ¥ 0.04) the despeckle
effect of the SDC, measured in terms of the SNR, shows improvement byddB dB, as the Lagrange
multiplier varies from 1 to 40. For lower value noise levef < 0.04) the SNR improvement is around
0.3 dB as the Lagrange multiplier varies from 1 to 10. In general, the resufigime 5 show better
SNR values for higher values of the Lagrange multiplier. However, itlshimeinoted that high value of

A may results in oversmoothed images and cause loss of details. Consegtentiye of selecting\

is that for noise variance less than 0.04should be selected to be around 10 and with noise variance
greater than 0.04 it should be selected to be less than 40.

Results and discussions

The experimental results presented in this section can be divided into 2 partke first part, the
performance of the proposed SDC technique is compared with Lee [8dlptmorphic wavelet filter
[35] and SBF technique [19] using a simulated speckle image. With a knoige-free image, the
performance of SDC is measured in terms of Peak Signal-to-Noise RatidR)R&Hfined as

2

The value of255 in Eq. (23) corresponds to the maximum possible pixel value and MSE isdedis
in (22).

In the second part, the performance of the proposed SDC techniqueesigiated using a computer
generated image and real US images. Here, the Lee filter is implemented withwindow size, the
homomorphic wavelet is used with Daubechies length-eight filter and<a&r window and the SBF
technique is implemented according to the set up given in [19]. The SDC is impiechas in section .
The rank values and the noise variance of the different images ardataftusing the method outlined
in [31]. As for the Lagrange multiplier, the value is selected using the rulie $eé previous section.



When using computer generated US or real US images, the noise-freeismagavailable which is the
practical scenario of denoising applications of US images. Therefeference-free methods are used
to quantitatively assess the denoising performance. The refereeeifthods in this work are mean
preservation, normalized variance, autocorrelation [36] and USDZAI Details on each assessment
metric are as follows;

1. Mean Preservation: A good speckle filter will maintains the mean intensity within a homogenous
region.

2. Normalized Variance: The normalized variance indicates the performance of the filter in homo-
geneous areas. This metric is given by

m n .o S\ 2
var D > -1 (X (i,5) — X)
mean? X2 )

(24)
whereX corresponds to the mean value of the pixel. In general, lower normalizieshea values

in the filtered image indicate better speckle suppression.

3. Autocorrelation: is another method of filter assessment in homogeneous area where dlmse au
correlation profile to the original image indicates better texture preservati@autocorrelation
for m x nimageX is given as [36]

T i 2oy X (6 )X (i + 2, j +y)
ﬁ ;’11 Z?:l X(2a3)2

whereX (7, j) is the grey value of pixeli, 7).

p(x,y) = ; (25)

4. Ultrasound Despeckling Assessment Index (USDSALI): is a modified Fisher discriminant contrast
metric [37]. USDSAI gives an indication on how well a despeckling algoriteduces variances
in homogeneous classes while keeping the distinct classes well sepdratenhetric is defined

as

USDSAL = kzL(meanc, — meanc,) (26)

k=1 0aT1ancec,

where|C}| denotes the number of pixels in claSg. If a despeckling filter produces classes that
are well separated then the numerator in 26 will be large. Converselyiiiitlaglass variance is
reduced, then the denominator will be small giving large value of USDSAtatithg desirable
image restoration and enhancement.

Evaluation of SDC performance in simulated speckle noise scenario

In this experiment, the capability of the SDC technique in reducing the speolde is tested and
compared with Lee, homomorphic wavelet and SBF technique. The periogsaf the noise reduction
techniques are measured in terms of PSNR values as tabulated in Table 1.



Table 1 PSNR (in dB) values for despeckling of the test image in Figure 4

Noise variance Noisy Lee Wavelet SBF SDC
0.02 20.61 19.88 21.66 21.68 21.73
0.04 18.98 19.73 20.56 20.49 20.60
0.06 16.80 19.46 18.18 19.05 19.84
0.08 14.61 18.96 15.61 18.23 19.11
0.10 11.69 18.07 12.26 17.81 17.67

The results in Table 1 show clearly the better reduction of noise achiev8®Byto Lee, Wavelet and
SBF as the noise variance as the noise varies from 0.02 to 0.1. In avérageSNR value of the
SDC is improved by more 3dB followed by SBF(2.9dB), Lee (2.68dB) andelh (1.1dB). However,

in order to gain more insight into the performances of the SDC, the denoisegsntd Figure 4 by

SDC, Lee, Wavelet and SBF are shown in Figure 6. Visual inspectioneofi¢imoised image by Lee
in Figure 6 clearly shows the blurring effect of Lee filter. The wavelettenother hand shows very
close performance to the SDC except for some ringing effect which ideisilthe homogeneous part
of the image. The SBF exhibits some blurred edges with some noise are natectaround edges.
In summary, SDC shows better noise reduction capability and less blurfetd &f comparison to Lee

and SBF and comparable performance to Wavelet, but with significantlyri&fsets and better details
preservations.

Figure 6 Restoration of test image in Figure 4 at noise variancey? = 0.03. From left to right,
Original, Lee filter, Wavelet filter, SBF and SDC filter.

Evaluation of SDC performance using a Field Il simulated image

In this experiment, the computer model of a cyst phantom is generated usiddAXRLAB Field Il
simulation [38,39]. The phantom contains five point targets; 6, 5, 4, 3, 2 ilmmeder waterfilled cysts,
and 6, 5, 4, 3, 2 mm diameter high scattering regions. The resulted B-modmade is shown in
Figure 7. The “Cyst” phantom in Figure 7 is composed of 3 constant dasse the filters ability to
reduce speckle noise while keeping the distinct classes well separatbed e¥aluated using normalized
variance, mean preservation, preservation of autocorrelation [81) 8DSAI assessment metric. Prior
to despeckling, the cyst image is converted into an 8-bit image obsize 512 pixels.

Figure 7 Uncropped US image of a computer generated cyst phanto

In the first experiment, the normalized variance and mean preservatitivefoyst image are calculated
over two selected regions labeled as A and B as in Figure 8. The normadidadcees of the two regions
calculated before and after denoising for SDC, Lee, Wavelet and $8prasented in Table 2. The
results in Table 2 show clearly the better reduction of noise achieved byc6B@ared to Lee, Wavelet
and SBF over the two homogeneous regions. In order to further vesdfigdtter better performance by
the SDC, the denoised images of Figure 7 by SDC, Lee, Wavelet and 8BR@wn in Figure 8. Visual
inspection of the denoised images in Figure 8 clearly shows far less ingdduarring effect, better
noise reduction, and better contrast enhancements by the SDC in comparibe Lee, Wavelet and
SBF. On the other hand, Figure 8 also shows that the SBF introduceseaiaimilar blurring effect to
Lee and Wavelet though it gives better contrast enhancement valuasyred in terms of USDSAI as
tabulated in Table 3.



Table 2 Normalized variance in denoised images of the cyst phantom inidgure 8

Original Lee Wavelet SBF SDC
Region A 0.03 0.02 0.02 0.02 0.01
Region B 0.04 0.02 0.02 0.01 0.01

Table 3 USDSAI value in denoised images of the cyst phantom in Figure 8
Original Lee Wavelet SBF SDC
1.00 2.10 1.80 3.07 3.00

Figure 8 Restoration of cyst image generated from Field Il simulation From left to right, Original,
Lee filter, Wavelet filter, SBF and SDC filter.

In addition to variance reduction, the values of mean preservation for thesyions calculated before
and after denoising for SDC, Lee, Wavelet and SBF filter are also dedlaend included in Table 4.
The results in Table 4 indicate the better capability by Lee to Wavelet, SBF a@drSpreserving the

mean value in the computer generated cyst image in Figure 7. The better nesarvption by Lee is

highly expected because of the averaging scheme of Lee filter which tienasintain the mean value
in the image.

Table 4 Mean preservation in denoised images of the cyst phantom inidure 8

Original Lee Wavelet SBF SDC
Region A 127.74 127.87 126.73 134.87 126.48
Region B 125.60 125.69 123.80 133.02 125.17

In order to assess the capability of the different algorithms in texture qwadg® in the denoised image,
the autocorrelation in region A and B of the cyst image in Figure 7 are caldibafere and after speckle
filtering and depicted in Figure 9. The autocorrelation profiles in Figuredlglshow the better details
preservation by the SDC in comparison to Lee, Wavelet and SBF. Notablgrdfiiles by Lee, Wavelet
and SBF exhibit wider profiles in the neighbourhood of zero lag andlladgviated from the original
at other lags. On the contrary, the SDC shows close autocorrelatiolemiofine denoised image to the
original one in terms of shape and better preservation of the unit impulststat zero lag value than
Lee, Wavelet and SBF.

Figure 9 Autocorrelation profile for Region A (top) and Region B (bottom) of cyst image in Fig-
ure 7. From left to right, Original, Lee filter, Wavelet filter, SBF and SDC filter.

Evaluation of SDC performance using real US images

In this experiment, the performance of the proposed SDC is analyzedampaced with Lee and
Wavelet using ultrasound images captured from a patient as shown ireR2glihe images are biopsy-
verified studies and presented with non-palpable tumors initially detected by ngnaphg [40]. These
images are shown in Figure 2 for malignant and benign tumor. In Figure patient with malignant
tumor was diagnosed with invasive ductal carcinoma whereas the patierttemittn tumor was diag-
nosed with fiboroadenoma. The image sizd386 x 256 pixels with the x-axis and the y-axis giving
lateral sizes and axial sizes of the image, respectively. The RF framesarded at 17 frame/second
and a total of 12 seconds of data are acquired using a linear transdtaefrom the Antaré® System.

In order to obtain the B-mode ultrasound images, the URI Offline Proce$sinlg (URI-OPT) run on
MATLAB platform is used to convert the RF data to the B-mode images as shokigure 2.



In the first part of this experiment, two homogeneous areas are selextadaked as region A and
B Figure 10. In order to assess the capability of the filters in reducing moiseage, variances are
calculated over these two regions before and after denoising the imageure F2g The values of
normalized variance are tabulated in Table 5. The results in Table 5 indicabettie noise reduction
capability by the Wavelet in comparison to Lee, SBF and SDC which show tivelyacomparable

performance. However, in order to gain more insight into the performaiites Wavelet and to aid the
interpretation of the results in Table 5, the denoised images by Lee, WavBlegr®l SDC are shown
in Figure 11. The results in Figure 11 clearly show that the main reasonddrigih noise reduction
values by the Wavelet in Table 5 is the intensive appearance of wavidettsrin its denoised image.
On the other hand, though the SDC gives approximately similar values to desB# in Table 5, the

denoised images in Figure 11 show clearly better noise reduction and image deeservation.

Table 5 Normalized noise variance in the denoised images of real US imegin Figure 2

Malignant tumor Original Lee Wavelet SBF SDC
Region A 0.012 0.003 0.001 0.003 0.003
Region B 0.009 0.004 0.001 0.004 0.003
Benign tumor Original Lee Wavelet SBF SDC
Region A 0.015 0.004 0.001 0.004 0.004
Region B 0.018 0.007 0.003 0.007 0.005

Figure 10 Region A and B in the US images of the breast tissue of Figu

Figure 11 Restoration of malignant tumor (top) and benign tumor (bottom) in Figure 2. From left
to right, Original, Lee filter, Wavelet filter, SBF and SDC filter.

In addition to the noise reduction capability addressed by the normalizede@ayike mean preservation
capability is also tested and presented in Table 6. The results show the leeftemance of Lee in
preserving mean value and this performance is very close to SDC. Ndtablyean value of Lee and
SDC only differs by no more than 0.03. On the other hand, the result orléfsand SBF indicates
poor preservation of mean by the two filters. In terms of contrast enhaarde given by the USDSAI
values as shown in Table 7, the SDC gives better contrast enhancenterih ioee and Wavelet but a
comparable performance to SBF.

Table 6 Mean preservation in the denoised images of real US images ingtire 2

Malignant tumor Original Lee Wavelet SBF SDC

Region A 5.29 5.30 0.72 12.80 5.29
Region B 7.49 7.49 0.87 14.90 7.46
Benign tumor Original Lee Wavelet SBF SDC
Region A 4.83 4.84 0.68 12.32 4.83
Region B 5.23 5.24 0.72 12.75 5.24

Table 7 USDSAI value in denoised images of real US images in Figure 2

Original Lee Wavelet SBF SDC
Malignant 1.00 2.63 2.96 4.11 4.09
Benign 1.00 2.83 2.70 4.22 4.17

To gain more insight into the performance of the three considered teclsnitye@ capability in preserv-
ing the characteristics of the original image is tested in terms of autocorrelatifilep of the selected



region, A and B as shown in Figure 12. The results in Figure 12 give adelzation on the better

preservation of the texture of the original image by SDC in comparison to\Magelet and SBF. In

fact, the SDC shows close autocorrelation profile of the denoised image toidgireal one especially

in term of shape and better preservation of the unit impulse structurecalazethan Lee, Wavelet and
SBF. Moreover, the autocorrelation profiles produced by Lee anceléashows widened profiles at
zero lag and largely deviated profiles from the original at other lags.

Figure 12 Autocorrelation profile for Region A of malignant tumor (to p) and benign tumor (bot-
tom) in Figure 2. From left to right Original, Lee filter, Wavelet filter, SBF and SDC filter.

In the third experiment, the required computational time by Lee, Wavelet, SBFSBXC to process
the ultrasound images of Figure 2 are calculated and included in Table Hilt€reare implemented
on MATLAB platform using a computer with Intel(R) Xeon(R) 5607 @ 2.27 G#lacessor and 8GB
RAM. The results in Table 8 shows that the computational times of both SDC awelet are almost
similar and less by nearly 3 times SBF and 10 times than LeeT).

Table 8 Computational time (in second) of Lee, Wavelet, SBF and SDr the US image in Fig-
ure 2

Lee Wavelet SBF SDC
Benign 63.97 8.88 17.46 6.20
Malignant 63.57 8.77 20.52 6.30

Conclusions

A subspace-based denoising technique for US images is presentedtaod Tene proposed technique,
SDC is based on linear estimator and rank reduced subspace model to eftexcddan image from the
corrupted one with speckle noise. The performance of the SDC is testedimitifated and real data,
and compared with Lee and wavelet. The results indicate better noise \argthiction capability with
the simulated images by the SDC than Lee, Wavelet and SBF in addition to less dffect. With
the real case scenario, the SDC, Lee, Wavelet and SBF are tested witlsiotagmed from raw RF
data. The performances are calculated in terms of noise reduction, impgové image contrast and
preservation of the autocorrelation profiles. The results indicate that@eCbetter texture preserva-
tion, measured in terms of autocorrelation profiles and good contrasheshant, measure in terms
of USDSAI value. Finally, the computational complexity of the algorithms is coegband the results
show that SDC required the least computational time compared to Lee, Wand|SBF.
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