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Abstract—In this article we designed a quantum network 

consists of four nodes using pairs of partial entangled state 

(Werner-state). The nodes of this network are connected via 

Dzyaloshiniskii-Moriya (DM) interaction. The entanglement is 

quantified between all different nodes using Wootters 

concurrence. It is shown that there is a maximum entangled 

state generated between two nodes which are connected 

indirectly. The degree of entanglement depends on the direction 

of switching the interaction. 
 
Index Terms—Entanglement, quantum network, 

dzyaloshiniskii-Moriya (DM) interaction, Entangled State 

 

I. INTRODUCTION 

In the last few years, much attention have been paid to 

implement the quantum computer, based on the basic 

principles of quantum mechanics [1], [2]. Certain 

complex problems (large scale data, data search and 

natural’s phenomenon’s simulation) can be solved by the 

quantum computer exponentially faster than its classical 

computer [3]-[6]. 

The big challenge to build functional, scalable 

quantum computer is to generate multi-entangled 

particles quantum network) [7]. The coupling of an 

arbitrarily large number of qubits is needed to implement 

real quantum computer [8], [9], with the possibility to 

switch on and off the coupling by means of external 

control [10]. In principle, coupling of only nearest-

neighbour qubits is sufficient to perform a universal set of 

gates [11]. 

Several proposals are suggested to implement the 

quantum computer. Solid state proposals show great 

promise for scalable quantum computer architecture. Two 

well-known proposals for quantum computation have 

been presented, including semiconducting quantum dots 

[12] and superconducting Josephson junctions [13]. 

Quantum dots currently enable the confinement and 

control of electrons on the scale of tens of nanometers. 

Spins in quantum dots can act as the qubit for quantum 

computation. 

Dzyaloshiniskii–Moriya (DM) interaction is 

anisotropic antisymmetric exchange interaction resulting 
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from the  spins between neighbouring dots which plays 

an important role in the coupling among the macroscopic 

scale systems [14], [15].  The Dzyaloshiniskii–Moriya 

(DM) interaction is detected and characterized in the 

quantum dot systems [15] and in the weak ferromagnet 

[16] experimentally. It is well known that, the DM 

interaction in quantum information science is very useful 

[14], [15]. Much works have been done studying the 

importance of DM interaction in the process of quantum 

entanglement (short range entanglement) [17], [18]. For 

example, the dynamics of quantum discord and 

entanglement for two spin qubits coupled to a spin chain 

with Dzyaloshinsky-Moriya (DM) interaction is studied 

 proposed theoretical scheme to 

preserve the entanglement in a two-qubit-spin coupled 

system in the presence of Dzyaloshinskii-Moriya (DM) 

interaction [19]. Percolation strategies based on multi-

partite measurements to propagate entanglement in 

quantum networks using pure but non-maximally 

entangled pairs of qubits is presented [20]. The effect of 

Dzyaloshinskii-Moriya (DM) interaction on pairwise 

quantum discord, entanglement and classical correlation 

in the anisotropic XY spin-half chain is studied in ref. 

[21]. A good entanglement is generated between two 

distant atoms is connected by fiber optics by applying 

Lyapunov control [22]. Long-range entanglement is 

generated between the spin chains using the Local 

Rotational Protocols with spin chain [23]. Also, the 

information transmission by means quantum teleportation 

using spin chain in the presence of the DM interaction is 

investigated [24].   

There are some efforts have been done to generate 

(multi-entangled particles) entangled networks via 

Dzyaloshiniskii-Moriya (DM) interaction. For example, 

Metwally 2011 has introduced theoretical scheme to 

generate quantum network using maximum entangled 

state (Bell State) via Dzyaloshiniskii-Moriya (DM) 

interaction [25]. The entanglement which generated 

between each two nodes is quantified. Morever the 

fidelity of the network channels to be used in the 

information exchange using the quantum teleportation is 

investigated. The entanglement is generated between 

different particles using Dzyaloshiniskii-Moriya (DM) 

interaction in the presence of spin-orbit coupling [26]-

[28]. However from practical point of view, it is difficult 

to isolate the entangled network from its surrounding, 

Journal of Communications Vol. 9, No. 5, May 2014

©2014 Engineering and Technology Publishing 379

Manuscript received December 18, 2013; revised April 17, 2014. 

in [17]. Hou et. al.



therefore the decoharence takes place [29]-[32] and the 

maximum entangled states turn into partial entangled 

states. The purpose of this paper is to introduce 

theoretical technique to generate multi-participant’s 

quantum network connected via partial entangled states 

of Werner type. The possibility of generation the 

entanglement among the network nodes using the DM-

interaction in three directions (x, y and z) will be studied.  

This paper is organized as follows: in Sec. II, the 

suggested system is described as well as an analytical 

solution is introduced. The entanglement between the 

different nodes is quantified in Sec. III. Finally our results 

are summarized in Sec. IV. 

II. THE MODEL 

As we mentioned above, the main objective in this 

contribution is to generate an entangled network via 

partial entangled states. Figure (1) represents our 

suggested quantum network and we can see that node "1" 

and node "2" are initially generated as entangled particles 

as well as node "3" and node "4" (solid line). The dashed 

line represents that the entanglement between node "2" 

and "3" which is generated indirectly by the DM (M = x, 

y and z) interaction. 

 
Fig. 1. Our suggested quantum network 

We assume that we have a source supplies the users, 

who will be connected to the network with two qubit 

states of Werner types [33]. The density operator of these 

types of states is given by 

    
    

 
     

     

 
   〉〈                    

where, ij=12, 34 and     〉     √      〉     〉  is the 

Bell state and    is a constant in this paper we take the 

value of       √ . To connect the nodes ”2” and ”3”, 

we use DM interaction. The Hamiltonian of the DM 

interaction is defined by the following equation [15], [25]. 

                                                

where,               is the coupling strength of the 

Dzyaloshiniskii-Moriya (DM) interaction and     

(        )   is Pauli operator for the first particle and  

   (        )  is the Pauli operators for the second 

particle. 

The initial system is described by           
             . The time evolution of this initial state 

is given by 

                        
                     

where,    is a unitary operator and              and 

  
      is   the complex conjugate of        

A. The Interaction is Awitched on X-axis 

Let us assume that, the interaction is switched on x-

axis  and in our case the connection will be between the 

second and third qubit, respectively. In this case the 

unitary  operator is defined by 

   

                                 

 
 

 
         (         )                 

In the computational basis (00, 01, 10 and 11), the 

unitary operator (4) can be written as 

   

        (

                        

                        

                        

                        

)         (5) 

where u00,00 = u01,01 = u10,10 = u11,11 = cos
2
Dx(t), u11,01 = 

u00,10 = u10,00 = u10,11 = −u01,00 = −u01,11 = −u11,01 = −u11,10 = 

i 2 sin 2Dx(t) and u00,11 = u01,10 = u10,01 = u11,00 = sin
2
 Dx(t). 

By using Eq. (3) and Eq. (5), one obtains the time 

evaluation of the density operator        . From this 

density operator all the quantum channels between all 

nodes can be obtained. For example the density operator 

between the first, second node is given by, 

The          {         }  and between third fourth 

node by          {         } 

          
 

 
(     

    
    )              

where ij = 12; 34 represents the density matrix of the 

output channel when the interaction is switched on the x-

direction,    
    

  √          √           

         
 . Similarly, the density matrix of node 1 and 3 

is given by the following equation, 

     (     
    

        
    

    )              

where    
    

     
    

 √            . In a similar way, 

the density operator between the first and the fourth node 

is:  

     (     
    

        
    

        
    

    )     
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where 

   
    

                       and    
    

     

    
    

                . Finally, the density matrices 

of the channels        and        are given by 

     
 

 
(    

      
 
      

    
        

    
    )         

with ij = 23; 24 represent the density matrix of the output 

channel when the interaction is switched in the x-

direction with 

  
    

     
    

                √           and  

    
    

 √             

B. The Interaction is Awitched on Y-axis 

Let us assume that, the interaction is switched on y-

axis. In this case the unitary operator is defined by 

   

    
     (    )      (   )     

 
 

 
                             

         
 

In the computational basis    

    
 can be written as in eq. 

5 Where u00,00 = u01,01 = u10,10 = u11,11 = cos
2
Dy(t), u11,01 = -

u00,10 = u10,00 = u10,11= −u01,00 = −u01,11 =−u11,01 = u11,10 = i 2 

sin 2Dy(t) and −u00,11 = u01,10 = u10,01 = −u11,00 = sin
2
 Dy(t) 

In a similar way, we can obtain the quantum states 

between all nodes. As an example, the quantum state 

between the first and the second nodes is given by, 

The          {         }  and between third fourth 

node by          {         }. 

          
 

 
(     

    
        

    
        

    
    )      

                            (11) 

where ij=12, 34 and     
    

     
    

  √      (    ) 

and     
    

  
 

√ 
     (    )

 
 . However in this case we 

found that the densities operator between the nodes 23 

and 24 are similar i.e., 

     
 

 
(    

   
     

   
      

    
        

    
    )             (12) 

with ij = 23, 24 represent the density matrix of the output 

channel when the interaction is switched in the y-

direction with 

  
   

   
   

    
    

                √           

and     
    

 √      (    )
 

. Similarly the density 

operator between the nodes "1" and "3" are given by 

     
 

 
(     

    
    )                (13) 

where     
    

 √      (    )
 
 

C. The Interaction is Awitched on Z-axis 

In this case the unitary operator is given by 

                             

 
 

 
         (        )       (14) 

In this case the unitary operator is given by 

   

        (

    
                
                 
    

)   (15) 

Similarly with previous sections, we can find the 

density operators between each two nodes. For example 

the density operator between the nodes 12 and 34 are 

given by, 

          
 

 
(     

    
        

    
     

   
    

    )                            
(16) 

where ij = 12, 34 represents the density matrix of the 

output channel when the interaction is switched in the z-

direction, with    
    

    
    

   √           and 

   
    

     
 

√ 
          

           
   . The 

density matrix of  node 1 and 3 is given by, 

     (     
    

        
    

    )    (17) 

where     
    

    
    

 √          . Similarly, the 

density matrix of the node 1 and 4 is, 

     (     
    

        
    

    )    (18) 

where    
    

     
    

 √           . Finally, the 

density operators between the nodes 23, 24 are given by 

     
 

 
(    

   
     

   
      

    
        

    
    )

 
   (19) 

where   
   

   
   

 
 

√ 
          

  and    
    

    
    

 

√  

 
          

III. RESULTS AND DISCUSSIONS  

In this section, we use the concurrence as a measure of 

the degree of entanglement [34], [35]. For a two qubit 

system it is defined as 

     {√   √   √   √    }    (17) 

where   , (k=1,2,3,4) is the eigenvalues of the matrix 

   (  
   

   
   

)   
 (  

   
   

   
) 

Fig. 2 shows the dynamics of entanglement C between 

the nodes i and j for the entangled states            and 

“14”. The solid curve represents the dynamics of 

entanglement between the first node and the second node 

the dash curve between node “1” and node “3” and the 

dot dash curve between node “1” and node “4”. In this 

figure the interaction is switched on the x-axis Dx = 0.3. It 

is shown that, the entanglement between the node “1” and 

“2” is started from a maximum value. This is because the 

initial state between node “1” and node “2” is partially 

entangled. As t increases, entanglement decreases and 

reaches its minimum value at t = 3 due to the interaction 
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between the second node and third node. It is clear that, 

initially the nodes “1” and “3” are completely separable. 

Therefore, the entanglement between these two nodes at t 

= 0 is zero. However, as soon as the interaction is 

switched on, the two nodes turn into entangled. It is clear 

that, as t increases the degree of entanglement increases 

to reach its maximum value at t = 4. This behavior is 

repeated as one increase. 

 
Fig. 2. The concurrence Cij (ij = 12, 13 and 14) where the solid curve 

indicates to the entanglement between the first and second nodes, the 
dashed curve shows the entanglement between the first and the third 

node and the dot dashed curve shows the entanglement between the first 

and fourth nodes and the interaction is switched on the x-axis and Dx = 
0.3 

 
Fig. 3. The same with fig. (2) but when the interaction is switched on 

the y-axis and Dy = 0.3. 

The entanglement between the first and (second, third 

and fourth nods), “12”, “13” and “14”, when the 

interaction is switched on y-direction is plotted in Fig. 3. 

From this figure we can see that, the entanglement 

between node “1” and “2” (solid curve) is initially started 

from the maximum value. This is in agreement with our 

argument that the first node and second node are started 

correlated. As time goes on the entanglement decreases 

and reaches zero around the scaled time of 2.  

The entanglement remains equal to zero for some 

times after that when t = 4 the entanglement increases 

again in a periodical behavior. The entanglement between 

station “1” and “3” started form zero and remains zero 

tell t = 2 the entanglement start to increase and reach the 

maximum value C13 = 0.4 when t = 3. With increasing the 

time, the entanglement is decreases and reaches zero and 

remain equal zero for some times and start increasing 

again. The entanglement between station “1” and “4” is 

represented by the dash dot line in which we can see that 

there is no entanglement generated between these two 

nodes. 

 
Fig. 4. The same with fig. (2) but the interaction is switched on the z-
axis and Dz = 0.3. 

Fig. 4 represents the dynamics of entanglement for 

states “12”, “13” and “14” when the interaction is 

switched in the z-direction. The figure shows that the 

entanglement over all channels is the same with Fig. 2 

which represent the dynamics of entanglement over the 

same channels when the interaction is switched in the x-

axis. 

The entanglement dynamics over channels “34”, “23” 

and ”24” are plotted in the Fig. 5 when the interaction is 

switched on x-axis, where the solid line is the 

entanglement for channel "34" and dash line for channel 

“23” and dot dash curve is the entanglement for channel 

“24”. From the figure we can see that the entanglement 

between node “3” and node “4” started from the 

maximum value and with increasing of the time the 

entanglement decreased tell reach to 0.4 the entanglement 

take long-lived time the period from 1 to 4 which is 

completely the same with channel “12” because these two 

channels we proposed that were initially started entangled 

state. 

 
Fig. 5. The concurrence Cij where ij= ”34”, ”23” and ”24” where the 

solid line is the entanglement between node "3" and "4" and dashed line 

represents the entanglement between node "2" and "3" and dot dashed 
line the entanglement between node "2" and "4" when the interaction is 

switched on the x-axis and Dx = 0.3. 

From this figure we can see that the dynamics of the 

entanglement over channel “23” and “24” is the same 
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where the it is started C23,24 = 0 at time =0 and with the 

time increasing the entanglement increased and reach the 

maximum value C23,24 = 0.43 at t = 2.5 and periodically 

repeated. Fig. 6 and Fig. 7 are the same as Fig. 5 but 

when the interaction is switched on y-axis and z-axis 

respectively. 

 
Fig. 6. The same with Fig. (5) but the interaction is switched on the y-

axis and Dy = 0:3 

 
Fig. 7. The same with Fig. (5) but the interaction is switched on the z-
axis and Dz = 0:3 

IV. CONCLUSIONS 

In this contribution, we suggest a simple model of 

quantum network, where each two nodes share a partially 

entangled state of Werner type. The disconnected nodes 

are connected via Dzyaloshiniskii-Moriya (DM) 

interaction, where we assume that DM is switch on all the 

possible directions. The degree of entanglement is 

quantified between all different nodes. Our results show 

that, there are entangled states are generated between all 

the disconnected nodes. The degree of entanglement 

depends on the location of the node. It is shown that, one 

can generate a long lived entanglement between these 

nodes when DM is switched on z or x directions. On the 

other hand, switching DM in y-direction preserve the 

entanglement between the nodes which are connected 

directly as well as that are connected indirectly. It is clear 

that the maximum entangled state doesn’t exceed its 

initial value and the entanglement of the generated nodes 

that are connected indirectly always smaller than those 

are shared initially entangled state.  

Finally, it is possible to generate entangled channels 

with maximum entanglement by controlling the direction 

of DM. Therefore, we can generate a maximum entangled 

network with high degree of entanglement; even we if we 

start from non-maximum entangled states. 
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