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Abstract. This work presents a new approach for nonlinear system identification of floating 

structures using time-varying autoregressive with exogenous input (TVARX)–based Volterra 

model. This method utilizes time series of measured wave heights as system input and surge motion 

as system output. Solution to the proposed approach is also proposed via Kalman smoother 

algorithm. The efficacy of the proposed method is then applied in a scaled 1:100 model of a 

prototype truss spar. It is shown that surge motion obtained from the identification results has good 

agreement with the experimental results either in time or frequency domain. 

Introduction 

 Floating structures is known as a structural system that exhibit significant nonlinear behavior. 

Prior researches had been carried out to model its nonlinear behavior through rigorous mathematical 

models such as [1]-[2] for spar platform. Modeling the nonlinearity through system identification 

had been carried out by [3]-[4] for tension leg platform. They had implemented the second-order 

frequency Volterra model successfully and concluded that it was adequate to model the nonlinear 

relationship between the wave height and surge motion of mini TLP.   

 However, frequency domain Volterra model needs higher-order spectral moments to 

estimate the Volterra kernels. If the wave heights are Gaussian, the estimation process is quite 

straightforward. That is because the only higher-order spectral moments namely cross-bispectrum is 

needed. The case is getting more complicated when the wave heights are non-Gaussian. One needs 

to characterize the wave height time series up to fourth-order spectral moments. This process 

certainly introduces bias and higher variance in the kernels estimation process. Frequency resolution 

will be trade off in the transfer function (TF) estimation. Sometimes, it leads to untrustworthy TF 

and affects the reconstructed model output. An alternative solution is offered in this paper by taking 

benefit on the time domain Volterra models instead of its counterpart. Their structure model in time 

domain enables the adaptive filter to be implemented. Modification is also proposed in the time 

domain Volterra model by replacing the linear impulse response function (LIRF) of the Volterra 

with the TVARX model. It is worth to note that TVARX model is superior in time series analysis 

and has high-resolution spectral estimation. In this regard, the current work aims to propose the 

TVARX-based Volterra model. All the identification process is carried out in the framework of 

wave-to-motion transfer function [5]. The proposed method is then applied to the floating 

structures, where truss spar platform is taken as case study.   

Mathematical Formulations 

In this section, mathematical framework as a pavement to achieve the objective of this paper is 

presented. It covers the concept of proposed approach and its solution method sequentially. 
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TVARX-based Volterra Model. Second-order Volterra model in a discrete time index n can be 

expressed in Eq. 1. Notation 1h is linear impulse response function (LIRF), known as first-order 

Volterra kernels while term 2h is quadratic impulse response function (QIRF). This model has 

memory length K  and model error is denoted with ( )ne , which is Gaussian with zero mean and 

variance 2
eσ . Further, model structure of TVARX model can be also expressed in Eq. 2, 
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In Eq. 2, notations ( )iny − and ( )−nu are delayed surge response and wave height variables, called 

regressors in discrete time index n , respectively. Notation P and M  are number of respective 

delayed regressors which are the order of TVARX model. Values ( )nai and ( )nb j are the TVARX 

coefficients which is time-variant. If the coefficients are time-invariant, then it will be equivalent 

with the well-known linear ARX model. The purpose to make the time-variant coefficients is to 

accommodate if the nonstationarity exist in the measured system input or output. Modification is 

put on replacing the RHS of Eq. 1 with TVARX model, Eq. 2 and expressed in Eq. 3, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).,
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Equation 3 can be expanded into Eq. 4, where the first term of RHS is regressors vector while the 

second term is Volterra kernels that will be estimated through proposed solution method. 
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Kalman Smoother. Equation 4 can be formed into more compact form Eq. 5, where vector ( )nϕ  

is the first term and vector ( )nθ is second term of Eq. 4, respectively.    

( ) ( ) ( ) ( )nennny
T +⋅= θϕ

^
                                                                                                                   (5)                                          

In order to estimateθ , Eq. 5 can be rewritten in a discrete state-space form and expressed in Eq. 6a, 

( ) ( ) ( ) ( )nvnnny += θϕ
^

                                                                                                                (6a)                     

( ) ( ) ( ).1 nwnAn +−= θθ                                                                                                               (6b)                                                                                      
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If term A is the state transition matrix which will be restricted as an identity matrix, time evolution 

of ( )nθ is simple random walk, then expressed in Eq. 6b. Terms ( )nv and ( )nw are the observation and 

state noise, respectively. At this stage, several adaptive methods can be utilized to estimate the value 

of ( )nθ . Adaptive algorithms such as least mean square (LMS), recursive least square (RLS) may be 

adopted. Kalman filter (KF) is more superior compared to both. However, as of all other adaptive 

algorithms, its drawback is the tracking lag. It can be avoided by using the so-called smother 

algorithm. It is an estimator which utilizes the future measurements in addition to the past ones 

when computing the estimates at a given time point. Smoother algorithm combined with KF is 

called Kalman smoother as solution for proposed method in this paper. As in the linear case, 

difference between model output ( )ny
^

 and the original system output, ( )ny  must be minimized by 

defining the cost function in Eq. 7 at each time index, 
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Details about LMS, RLS, Kalman smoother algorithms can be found in [6] for reference.   

Experimental Setup 

The method is then applied to the truss spar model. The model was designed with scale of 1:100 to 

fit the wave tank by following the Froude’s law of similitude. The test model was moored with four 

mooring lines. The linear springs were connected to load cells to measure the mooring system loads. 

The model was then tested in the wave tank of the offshore engineering laboratory, Universiti 

Teknologi PETRONAS. The wave tank has 22 m length, 10 m width and 1.5 m depth. The rigid 

body motions were measured by optical tracking system, while wave heights were measured with 

wave probes. Two probes were placed in front of the model and the rest at the back of the model. 

The sea-keeping characteristic of the model was tested under random waves. The schemes are 

displayed in Figs. 1-2. The JONSWAP spectrum was used to generate the random wave. The model 

was then subjected a unidirectional random wave in head seas configuration. The sea state 

is mH s 5.4= , Hzf P 1.0= and 2=γ in full scale. The tests were recorded for 3000 seconds at a 

sampling frequency of 10 Hz (prototype scale).  

 

Fig. 1 Truss spar platform model 

 
 

Fig. 2 Truss spar testing model [7]  

Results 

In order to check the frequency contents of both measured surge motion and wave heights, spectral 

analysis is then carried out. The results are displayed in Figs. 3-4. 

Spectral Analysis. The spectrum of wave elevation is shown in Fig. 3b. It can be seen that the 

target based on JONSWAP spectra and measured spectra agree well. Further, in the Fig. 4b, surge 
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motion has two principal frequency peaks. The first peak is around 0.016 Hz. This frequency is 

known as low frequency region (LFR) created through the difference frequency interaction. This 

frequency is still above the surge resonant frequency of the prototype at 0.008 Hz obtained from 

surge free decay test in still water. The second peak is around 0.1 Hz, corresponds to the frequency 

exist in the random wave spectrum. This frequency is known as wave frequency region (WFR). 

Most of wave energy is located in this frequency. Direct assessment may be drawn directly from the 

results above, that the low frequency is not present in the wave spectrum, but the reverse is true. In 

the perspective of dynamic system, truss spar platform is a nonlinear system. 
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 Fig. 3 Random wave (a) measured time history 

(b) wave spectrum 
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Fig. 4 Surge motion (a) measured time history       

(b) surge motion spectrum 

Identification Results. After Volterra kernels are estimated via Eqs. 6a-6b, LIRF  and QIRF may 

be generated. Respective tranfer functions and their coherence functions can be estimated from 

those results. However, only identified surge motion is reconstructed and presented in this paper to 

show the efficacy of the proposed method. To acces this, comparisons between experiment and 

reconstructed data in time domain are depicted in Figs. 5-6.  
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Fig. 5 Surge motion obtained from Volterra 

model 
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Fig. 6 Surge motion obtained from              

Volterra-based TVARX model 

Reconstruction for time domain comes from Eq. 3. Once the surge motion is reconstructed, by using 

existing spectral analysis, frequency domain of identified results can be carried out via multitaper 

and displayed in Figs. 7-8. To compare the prediction results with its respective measured time 

series qualitatively, the normalized mean square error (NMSE) is calculated as a statistical 

comparison. The NMSE value is shown in Table 1. NMSE values of the proposed method have 

smaller NMSE value compared to the stand-alone time domainVolterra model. It shows that the 

proposed method has better accuracy in modeling the nonlinearity of the system than the stand-

alone time domain Volterra model. These approaches are different with frequency domain Volterra 

model via higher-order spectral analysis. Reconstructed surge motion is obtained from identified 

linear TF, quadratic TF and input wave height spectrum and inverse FFT is then employed. 

(a) 

(b) 

(a) 

(b) 
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Fig. 7 Surge spectrum obtained from          

Volterra model 
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Fig. 8 Surge spectrum obtained from             

Volterra-based TVARX model 

Table 1: NMSE Value 

Method 
NMSE 

Time domain Frequency domain 

Time-domain Volterra model 0.213 0.181 

Volterra-based TVARX model 0.103 0.0067 

 

Summary 

In this paper, the application of TVARX-based Volterra model for nonlinear system identification is 

proposed and applied in floating structures. The high correspondence between the predicted and 

actual surge response is achieved either in time or frequency domain through proposed method. By 

having more accurate identification results of the system in term of empirical model, dynamic 

response prediction of a moored floating structure such as truss spar can be carried out across many 

wave frequencies in a most efficient manner.   
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