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Abstract:  The world’s population, approximately 90% spend most of their time inside the buildings, 
which results in 40 – 45% of the total energy consumption. The annual demand of building energy is 
increasing in the range of 1.5 - 1.9% due to growing world’s population. To reduce energy 
consumption and wastage, effective energy management within the buildings is very essential. 
Therefore, the concept of smart and energy efficient buildings has become a future trend. It becomes 
challenging to design and develop the control system for such buildings that require energy efficiency 
with optimum comfort level  for dwellers. In this connection, various studies have been conducted to 
meet the challenges in this area. However, very limited studies are reported in the literature, especially 
on the relationship model between energy consumption and comfort parameters within the building. 
Therefore, in this work, a robust stochastic control model (RSCM)  has been developed between the 
relationship of energy consumption and comfort parameters. The developed model will be helpful for 
the further minimization of building energy consumption with maximum comfort level in designing 
building control system. 
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INTRODUCTION 

 
The rapid depletion of fossil resources and climatic threats all around the world, since two decades have 

diverted the attention of the researchers and scientists to work more on energy efficiency and sustainability. In 
order to tackle this situation with limited time and resources, demand side management (DSM) addresses the 
issue. DSM also relies on smart automated buildings for their energy efficiency and sustainability for future 
trend. The benefits of these buildings include high power efficiency, increased comfort and environmentally 
friendly. 

The building industry is an emerging energy user, as approximately 90% (Benjamin et al. 2011) of the 
population spend most of their time in buildings, thus consuming about 40 – 45 % of the overall energy 
(Torcellini et al., 2006; Doukas and Patlizianas, 2007). The annual rising rate of 1.5 - 1.9 % is recorded for 
energy consumption in this sector alone, along with 1% peak demand increase of system network (Torcellini et 
al., 2006; Peng et al., 2008; Lertlakkhanakul and Choi, 2008). Therefore, significant potential exists to reduce 
building energy demand at reduced costs with high returns. 

The function of the intelligent building management system is to monitor, control and optimize building 
services, such as heating and cooling, visualization, air quality, humidity and other equipments. It is obvious 
that, the improvement of the indoor environment comfort demands, increased energy consumption. This 
signifies an issue of smart efficient buildings to balance the occupant’s comfort requirements and power 
consumption. In order to achieve high level comfort and power efficiency, an effective control system should be 
developed. The occupants living quality and health are vital, realizing the control strategy for the systems of 
thermal, visual and air quality comforts. Thus managing the power availability and ensuring the comfortable 
environment with optimal exploitation of outdoor environment control are in conflict with each other. The 
factors influencing the two conflicting objectives are the user preferences, sensor position and accuracy and 
variable outdoor climate conditions. 

In a building system, numerous methods for comfort control have been proposed. Predictive control model 
with weather predictions coupled with the energy saving potential of HVAC system developed in (Kusiak et al. 
2010; Siroky et al. 2011; Yang and Wang, 2013). (Zhun et al. 2010) Developed visual comfort control with a 
fuzzy logic controller. (Zhu et al. 2010) Linked day light with artificial lighting system for visualization 
comfort. (ASHRAE, 2009) examined a robust control for air flow rate and (Baker et al. 1993) develop fuzzy 
reasoning control machine for air quality control. (Dounis et al. 2011; Alexandridis et al. 2007) reported fuzzy 
control model with human decision making and combine the comfort factors. This model provides the approach 
for dynamic model relationship for power consumption and comfort factors. The main objective of this study is 
to drive the model relationship for the precision and dynamic control scheme capable of satisfying both energy 
demand and indoor comfort. As the standard interval stochastic model relation to energy consumption does not 
report in the previous studies.  The developed robust model is useful in designing the building control 
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characteristics with learning and weighted decision making and devise the position for the sensor measurement 
mechanism.   
 
Methodology: 

The extensive literature study leads towards the comfort identification factors (that are thermal, visual and 
air quality) in building envelopes and was found from the ASHARE, 2009  standard range of the comfort set 
point. The fuzzy controller exploits the exterior environmental parameters and user defined set points as inputs. 
The fuzzy controller exploits the exterior environmental parameters and user defined set points as inputs. The 
fuzzy model and rule base of (Wang, et al, 2010, Shaikh, P.H. et al, 2013) are developed and applied for our 
function development. The input to the fuzzy control system is the stochastic standard interval taken from the 
environmental protection agency (EPA) primary range (Mark, 1996). Curve fitting is done to drive out the 
appropriate standardized model relationship using MATLAB®. The models are generalized as it works with the 
error between outdoor sensor data and the set points of individual environmental factors. Since, the power given 
by the central controller agent is sufficient, the indoor environmental parameters will be maintained at 
comfortable values; otherwise, the comfort level is negotiated. The three control variables of temperature, CO2 
concentration and illumination are provided through sensors as inputs to compute the desired power. 
 
Comfort Criteria: 
A. Thermal Comfort: 

Temperature level in the building envelope is used to indicate the thermal comfort poses high impact on 
living quality. The maintenance of temperature in the specified range for occupants pleasure and efficiency, the 
auxiliary heating and cooling system is applied. It is normally considered as occupants body sensation, generally 
known as indexed Predictive Mean Vote (PMV) based on heating, ventilation and air conditioning (HVAC) 
systems. It is proportionate to temperature, mean radiant temperature, air velocity , humidity and clothing 
factors as determined in (Lah et al. 2005; Sri Andari, 2011). The PMV standard index swings in the range of -3 
to +3, while it varies between -0.5 and +0.5 and satisfy a large population of around 90 % of the dwellers 
exposed to a certain environment. It is specified with envelope temperature and is a vital feature in the 
computing PMV index. Generally, single actuator system is associated with both the heating and cooling 
systems. 

 
B. Visual Comfort: 

Electric lighting is reported to consume 20-30 % of energy in building envelopes (Lah et al. 2005; Sri 
Andari, 2011; Virote and Neves-Silva, 2012). Lighting offers an important component of smart grid provides an 
attractive potential as controllable loads to offer dynamic load management services. The radiance level in the 
building environment is provided to indicate the visual comfort, measured in lux (Zhu et al. 2010). The 
electrical lighting system is used to control illumination to achieve the visual comfort (Zhu et al. 2010). Other 
parameters that are glare, wall colors etc. are subjective and challenging to measure. Lighting systems provide 
distributed load shedding flexibility, resulting power reduction with illumination requirements with associated 
lights through outdoor solar illumination or other illumination compensation system. 

 
C. Air Quality: 

The indoor concentration of pollutants is subjective, predominantly for space indicated with the CO2 
concentration (Dounis and Caraiscos, 2009; Frontczak and Wargocki, 2011; Peschiera et al., 2010). The 
availability of CO2 at certain level, causes to be lazy and drowsy, get headaces or function activity at low levels. 
This signifies the existence of the dwellers and metabolic activities, ventilation levels and several pollution 
sources in the building envelope (Zhu et al. 2010). The air quality index is indicated with CO2 concentration on 
the building envelope, measured in parts per million (ppm). It is generally recommended for CO2 to have a total 
of less than 600 ppm difference above outdoor level.  

 
Building Model and Control Design: 

The proposed BECMS system aims at controlling thermal, visual and air-quality comfort parameters. These 
parameters poses significant impact on the user’s quality of living (Sri Andari et al. 2011). The uncertain 
targeted comfort is treated with overall system optimization through the use of fuzzy control technique. 
Therefore, real world implication and user activities rise numerous sources of suspicions, from unknown 
dynamic environment in buildings (Rattan and Brehm, 2011; Jang and Healy, 2010). In realizing intelligent 
building control model, the distributed fuzzy control design is depicted in Fig. 1. This satisfies adaptable 
comfort demands in achieving building automation dealing with consumer comfort and power requirement. 
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Fig. 1: Structural Design for Building Envelope Automation. 
 
The fuzzy control action is hooked with the gains of the input and output as well as with fuzzified practice, 

information base, and the defuzzified process. The input to fuzzification block transforms incoming discrete 
values to fuzzy values. This lets into the fuzzy inference engine and connects knowledge incorporation with the 
set of rules using fuzzy approximate reasoning. The goal is to compute the discrete output from the resulting 
fuzzy set with de-fuzzification block. 

 
A. Thermal Control Model: 

The fuzzy linguistic membership functions for input and outputs as in Fig. 2. namely; negative large ‘NL’, 
negative average ‘NA’, negative small ‘NS’, neutral ‘NE’, positive small ‘PS’, positive average ‘PA’, positive 
large ‘PL’ represents fuzzy sets. Mamdani implication inference with the constraints of the proportional 
derivative (PD) controller (Dixit et al. 2010; Masoso and Grobler, 2010; Emmerich and Persily, 2001) 
knowledge base is employed as shown in Table 1. The common centroid de-fuzzification is employed to carry 
out the power required at the end. 

 
Table 1: Fuzzy Rule Base for Temperature Control 

Power Required ETemp 
NL NA NS NE PS PA PL 

EDTemp 

NL NL NS PS PL PL PL PA 
NA NL NA NE PA PA PL PA 
NS NL NA NS PS PA PL PA 
NE NL NA NS NE PS PA PA 
PS NL NL NA NS PS PA PA 
PA NL NL NA NA NE PA PA 
PL NL NL NL NL NS PS PA 
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                    (c) 
Fig. 2: Membership function for inputs (a & b) and output (c) of temperature control 

 
The mathematical model as in equation 1 between the power demand and the sensor measurement value as 

depicted in and in Fig. 3. The statistical validity of the piecewise linear fuzzy robust model is expressed in Table 
2, shows 95 % confidence level fit, in regard to the normalized mean (-1.4) and standard deviation (2.02). The 
bisquare robust method is employed with equation 2, which assigns the weight to minimize SSE. The weight is 
given to each data point, depends on how far the point is from the fitted line. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Curve fitting plot for the temperature and power demand 
 

5.655* 2.961Temp TempP E= +             (1) 
 
Where, PTemp is power required for the temperature control actuator and ETemp is the temperature error 

between the sensor and set point value. The developed linear model in equation (1) depicts the behavioural 
relationship between the power consumption and interior thermal change. Further, for every 5.655 unit change 
in ETemp , the corresponding 1 unit variation is observed in PTemp. While the constant 2.961 is expected ratio of 
power being consumed at time t=0. This is perhaps the minimum rated power required for the HVAC system to 
operate in its least operating condition.     

      
               (2) 

 
 
 

Table 2: Statistical characteristics for robust model relationship of temperature control 
Where ETemp is normalized       
Mean -1.4 
Standard Deviation 2.028 
Goodness of Fit 
Sum of Squares due to Error (SSE) 69.37 
R-square (R2)  0.9691 
Adjusted R-square (R2)  0.9667 
Root Mean Squared Error (RMSE) 2.31 

 
B. Visual Control Model: 

 
The fuzzy based model (Emmerich and Persily, 2001; Ipakchi and Albuyeh, 2010) is developed with 

membership function as ‘small’, small ‘SS’, big small ‘BS’, ‘OK’, small big ‘SB’, ‘Big’as shown in Fig. 4. The 
proportional control rule base is applied to the model to get the discrete output. 
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Table 3: Fuzzy rule base for illumination control 
                     Lighting 

Prequired 
Small SS BS OK SB Big 
OFF S REG SB BB ON 

 
 
 
 
 
 
 
 
 
 
 
 
                                                                        (a) 
 
 
 
 
 
 
 
 
 
 
 
                                                                         (b) 

Fig. 4: Membership function for input (a) and output (b) of illumination control 
 
The robust model relationship in equation 3 is drived with discrete output of the behavioral relation between 

the power demand and illumination as shown in Fig. 5. The sum of sine model is best fitted as described in the 
statistics Table 4, shows 95 % confidence level fit, in regard to the normalized mean (-200) and standard 
deviation (310.2).  

 
4.428* (0.9603* 0.4234)L LP Sin E= −           (3) 

 
Where, PL is power required for the lighting control actuator and EL is the lux error between the sensor and 

set point value. The developed sum of sine model in equation (3) depicts the behavioural relationship between 
the power consumption and interior illumination level. The model function represents the smooth and 
continuous  sinusoidal behavior. The value 4.428 represents the magnitude required for the power consumption. 
While 0.9603 is the unit horizontal cycle difference in EL frequency, along with sine function will result in 
corresponding variation of the power consumption. The constant 0.4234 represents the vertical phase shift in the 
sine curve. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 5: Curve fitting plot for the illumination and power demand 
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Table 4: Statistical characteristics for robust model relationship of lighting control 
Where EL is normalized       
Mean -200 
Standard Deviation 310.2 
Goodness of Fit 
Sum of Squares due to Error (SSE) 11.23 
R-square (R2)  0.9392 
Adjusted R-square (R2)  0.9324 
Root Mean Squared Error (RMSE) 0.7899 

 
C. Air Quality Control Model: 

The fuzzy membership as in Fig. 6. ‘low’, small large ‘SL’, ‘OK’, small high ‘SH’, big high ‘BH’, ‘High’ 
and an output of required power ‘OFF’, ‘S’ (small), ‘REG’ (regular), ‘SB’ (small big), ‘BB’ (big big), ‘ON’are 
for input error and output power requirement Indice. The proportional controller (Rahimi and Ipakchi, 2010; 
Marszala and Heiselberga, 2011) knowledge base constraints are shown in Table 5. The discrete output power 
has been obtained with sensor inputs.  

 
Table 5: Fuzzy Rule Base for Air Quality 

CO2 Concentration 
 LOW SL OK SH BH High 
Prequired OFF S REG SB BB ON 

 
 
 
 
 
 
 
 
 
 
 
 
                                                                        (a) 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                         (b) 

Fig. 6. Membership function for input (a) and output (b) of air quality control 
 
The behavorial relationship robust model as depicted in equation 4 from the fuzzy output relation with input 

as shown in Fig. 7. The Gaussian model is best fitted as described in the statistics Table 6, shows 95 % 
confidence level fit, in regard to the normalized mean (740) and standard deviation (373.3).  

 
21163

( )
3899.444*

AQE

AQP e
−

−
=

 
              (4) 

 
Where, PAQ is power required for the air quality control actuator and EAQ is the CO2 concentration error 

between the sensor and set point value. The developed gaussian model in equation (4) depicts the behavioural 
relationship between the power consumption and indoor air quality. The Gaussian function is in similar manner 
to the bell shape which rapidly falls off towards zero. The constant 9.444 represents the maximum power 
consumption of the air quality actuator. While 1163 defines the center of the air quality index in the model 
development, and 389 represents controls the air quality index width in horizontal plane of bell shape. 
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Fig. 7: Curve fitting plot for the air quality and power demand 
 

Table 6: Statistical characteristics for robust model relationship of air quality control 
Where EAQ is normalized       
Mean 740 
Standard Deviation 373.3 
Goodness of Fit 
Sum of Squares due to Error (SSE) 6.361 
R-square (R2)  0.9646 
Adjusted R-square (R2)  0.9588 
Root Mean Squared Error (RMSE) 0.7281 

 
Discussion: 

The extracted fuzzy control models comprise comfort achievement and power consumption. The discrete 
output of fuzzy represents the dynamic behavior allows user preferences to integrate. The features of the input 
data from sensors presented to the model may not be authentic and is intrinsically noisy. This may result in the 
error of around 2 % in its upper and lower bounds. The output is the required electrical power exploited for 
control of each comfort parameters. The models power output is equated to the master controller to adjust the 
controller according to the power available. The developed model accuracy described statistically and displays 
over 95 % confidence level. Thus verify the models to be further implemented for system optimization. The 
operation of the building requires high energy efficiency to save energy consumption. The behavioral 
relationship model is very useful in designing the building control and devise the position for the sensor 
measurement mechanism.   
 
Conclusion: 

In this study, the RSCM comfort index model in regard to the relationship of comfort and power 
consumption pattern is developed. The intelligent fuzzy inference slave control model is provided for the wire or 
wireless sensor or by an actuator network for decision making to maintain balance. The learning and weighted 
decision making were considered keeping in view of consumer comfort. This will give proper awareness to 
consumers for taking suitable actions. The fuzzy control output has been utilized to drive the indirect behavioral 
relationship RSCM model for the power demand and the controlled parameter, which will be further helpful in 
carrying out the system optimization in the grid connected power supply and the building envelope as the future 
target of research.  
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