Tournal of Applied Sciences 13 (2): 308-314, 2013
ISSN 1812-53654 / DOL 10.3923/jas.2013.308.314
© 2013 Asian Network for Scientific Information

Assessment of Different Matrix-fracture Shape Factor in Double Porosity Medium
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Abstract: Shape factor is required in modeling naturally fractured reservoirs represented by double porosity
theory. The function of shape factor is to define the leakage term between the matrix block and fracture
conduits. Different geometric assumption of the double porosity medium resulted in different shape factors and
consequently the leakage term. The influence of various shape factors based on different geometric
assumptions on their matrix-fracture transfer rate has been studied in this study. Comparison of different shape
factor performance is accomplished via the dimensionless pressure and time. This study proposed a new
relation that measures the impact of different shape factor in the consequence flow rate in fractured reservoir.
Tt was discovered that higher value of shape factor contributes to higher rate of change of flow rate. This
correlation can aid in deciding the appropriate shape factor for modeling double porosity medium.
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INTRODUCTION

According to Sarma and Aziz (2006), Naturally
Fractured Reservoir (NFR) is a complex system with
irregular fractures network, vugs and matrix blocks. They
added that NFR can be defined as a reservoir having a
connected fractures networl which has significant higher
permeability than matrix. This implies that production of
hydrocarbons is highly dependent on the matrix-fractures
interaction. This paper assessed the influence of different
shape factor in modeling the matrix-fracture transfer rate.

NFR can be modeled by using double porosity
concept. The double porosity concept was introduced by
Barenblatt ef al. (1960), while Warren and Root (1963)
were the first to use double porosity concept in reservoir
simulation. Double porosity concept is having two
separate partial differential equations to define matrix and
fractures flow. Matrix usually have low permeability and
high storativity, while fractures have high permeability
but low storativity. This suggest that matrix function as a
main source of hydrocarbons while, fractures become the
flow path of hydrocarbon production. For this reason,
interaction between matrix and fractures should be
considered. This interaction can be described by using a
transfer function. The matrix-fracture transfer function
was given by Warren and Root (1963) as:

0= (o, ) (1)
n

Equation 1 showed that the matrix-fracture transfer
function which requires shape factor to governs the flow.

The initial double porosity model of Warren and
Root (1963) used assumption of pseudosteady flow and
the NFR system 1s simplified into blocks of matrix and
fractures set which looks like sugar cubes (Fig. 1).
Each cube 1s known as matrix that contamed m within a

Matrix

Fractures

Fig. 1(a-b): Actual reservoir block and sugar cubes model
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systematic array of identical and rectangular
parallelepipeds. Matrix is assumed to be homogenous and
isotropic. All the fractures are continuous and may have
different spacing and width to simulate certain degree of
anisotropy.

SHAPE FACTOR

Most NFR modeling require shape factor in the
matrix-fracture  transfer function, although, some
approaches do not require shape factor (Firoozabadi and
Thomas, 1990). Shape factor is commonly used and it is a
crucial parameter in matrix-fracture transfer function.
Warren and Root (1963) have defined rectangular shape
factor as:

oo 4n(n2+ 2) (2)
L

€

where, n refers to the number of fractures sets and:

n=l L, =L, (3)
n=2% L,=2L,L /L, +L) 4
n=3% L,=3LLL/LL +LL +LL,) (5)

In subsequent years, Kazemi et al. (1976) developed
new shape factor for their simulator using finite difference
method. Their shape factor for rectangular geometry is:

o=4(1/L2 +1/12 +1/12) (6)

Ueda et al. (1989) research concluded that Kazemi’s
shape factor needed to be multiplied by a factor of 2 or 3
n order to get more realistic pressure distributions. Their
works were later supported by Lim and Azz (1995), which
showed that Kazemi's shape factor needed to be adjusted
with factor of ~2.5.

Coats (1989) derived shape factor that are doubled of
Kazemi’s shape factor. Coat’s shape factor for rectangular

geometry 1s:

o=8(L/L +1/LE + 1/12) (7)

The method used by Coats (1989) 1s Fourler fimte
sine transform and integration. Fourier transformation was
also used by Chang (1993) and Lim and Aziz (1995) to
arrive at another shape factor different from Coats (1989).
Coat’s work became the main references for both of them.
They continued Coat’s work but with different boundary
conditions. By using pressure boundary conditions, they

arrived at similar shape factor for rectangular geometry
Eq &

o=n (/L% +1/15 +1/12) (8)

Lim and Aziz (1995) added that the total amount of
mass entered a system at time t, M, with corresponding
mass after infinite time, M can be expressed as in Eq. 9. In
additions, the matrix-fracture transfer rate can be
expressedas in Eq. 10:

Mt].me :§m7p1 :ﬁm7p1 (9)
M, Pr — P P: P
P,
. 0

Equation 11-13 are the analytical solutions given by
Lim and Aziz (1995) for single phase flow in fracture. The
solutions can be differentiated with respect to time and
related with Eq. 10 to obtain respective shape factor:

— 2

n=1 M:1—0.81exp{7ﬂkt2} (11)
PP e L

n=2 M=1—0.69exp[5'781ﬂ (12)
PP ppc,R

= 3 ol k
n=3 Py p‘zl—[%) exp Tt kz"+—2y+k—; (13)
p: P n dpe \ Ly Ly Ly

Meanwhile, Chang (1993) has derived another shape
factor using constant flow rate boundary conditions
which are:

o=12°(1/12 + 1712 + 1/12) (14)

On the other hand, Quintard and Whitaker (1995)
used assumption of infinite permeability in the fracture to
set the boundary value problem for double porosity flow.
By solving using Fourier series for rectangular geometry,
they reached conclusion of shape factors which are:

o=12°(1/1) (15)
o=14.22° (/L2 + 1/L2 + 1/12) (16)
o=16.547 (/L2 +1/L2 + 1/12) (17)

Table 1 summarized all the shape factor for
rectangular geometries.
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Table 1: Shape factors for rectangular geometry

Sets of Chang (1993),

fracturesn  Warren and Root (1963) Kazemief af. (1976) Coats (1989) Chang (1993)  Lim and Aziz (1995)  Quintard and Whitaker (1995)

1 1212 4L, SL 12L T L* 12.00L

2 32/L° 41 8L 121 T2 L* 14.22L

3 60/L7 4L SL 121 T L* 16.54L

Table 2: General data used in comparison study Kt (18)
Parameter Value ty= dpic g

Blocks dimension (fxfp<f)) 100%100x100 £

Matrix porosity (fraction) 0.29

g:g:;z;%?s:ghgé?) (1) o1 Tt is desired to know the effect of different shape
Fracture pemmeability (mD) 90 factors m multiphase flow NFR simulation. The
Initial reservoir pressure (psi) 5000 comparison is done by representing the simulation results
Bottom hole pressure (psi) 5500

Productivity index (rb-cp/day-psi) 1

COMPARISON OF SHAPE FACTORS

The reservoir problem selected for this comparison
study was a multiphase depletion run with 5x3x2 blocks
and only one production well at (1,1,1). The 5x3=2 blocks
were selected for this purpose to allow 3-ways flow
between the blocks during simulation. There 13 no
mjection well and only one production well. This 1s to
avoid complication of the problems which later would
complicate the results analysis. The production runs with
no flow constraimnts. Table 2 describes the details of the
reservoir problem. The additional reservoir properties
used for this comparison are from the Sixth SPE
Comparative Project (Fircozabadi
Thomas, 1990).

Solution and

COMPARISON APPROACH

Lim and Aziz (1995) has provided analytical
derivation of shape factors for single phase flow.

In the effort of deriving shape factors, they have
shown that the total amount of mass entered a system
at ttme t, M, and the corresponding mass after an
mfinite time, M, can be expressed as in Eq. 9. The
Equation 9 is known as a dimensionless pressure, Py, This
dimensionless pressure is a function of dimensionless
time as shown in Eq. 18.

The equivalent fractures length, L, 1s given in the
Eq 3-4

n=1, L*=1/12

2 2
n=2, L¥=1/L] +1/L]
n=3, L*=1/L} +I/L; +1/L}

and the analytical expressions for single phase flow is
shown in the Eq. 11-13:

310

in Py and t,. A basic double porosity simulator is used to
solve the reservoir problem. The simulator solves the
pressure and saturation by using Implicit Pressures
Explicit Saturation (IMPES) method. When Py, 13 plotted
against tp, the gradient (Py/t;) gives indication of the
matrix-fracture transfer rate. From Eq. 19, it 13 shown that
the matrix-fracture transfer rate is proportional to the
gradient (Pp/t;). Eq. 19 can be found by extending the
analytical solution given by Lim and Aziz (1995). The
derivation new correlation is shown in the appendix:

{ Pk P fpf)]

“-LZ i
This relation is for analyzing the results. In additions,
the results are compared against the Lim and Aziz (19953)

ap,

T at,

Q

analytical solutions.

Single set of fractures: Shape factor for single set of
fractures is used when fractures are assumed to be
present only in one direction (Fig. 2). The flow between
matrix and fracture 1s assumed to be in a single direction.
The direction of fractures is not necessary has to be in
x-axis, but it can be at any axis such as straight y-axis or
slanted x-y axis. This also applies to double and triple set
of fractures.

The comparison result for single set of fractures is
presented in Fig. 5. By applying Eq. 19, it is deduced that
steeper gradient shows higher matrix-fracture transfer rate.
Att,<0.5, Kazemi’s shape factor has showed much lower
transfer rate as compared with other researcher’s shape
factor. Tt also require twice the t, value to reach the same
Py value. Note that all the curve gradient is very hugh at
early t; and becoming lower as t, increases. This indicate
that flow is high at early time and decreasing with time.
This curve behaviour 1s associated with rate of change of
flow Eq. 19:
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Fig. 3(a-b): (a) Matrix block with double set fractures and (b) Flow boundary between matrix and fractures
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Conversely, Warren and Root (1963) shape factor
vield the Thighest Agradient. The Warren and
Root (1963) shape factor flow 1s the lughest at early t,
and then, it dropped quickly. Tn general, all the results
converges wmto Pp and the curve gradient becoming
linear. This indicate that the becoming
steady. When the gradient is 0, it literally means that

flow 1is

no flow between matrix-fracture and it occurs at P, = 1.
At Py, = 1, the p, must be equal to p;since the initial
pressure, p, always constant. This supported by Eq. 1
whereby there must be a pressure difference to initiate the
flow.

As stated earlier, analytical solution from Lim and
Aziz (1995) is based on single phase flow and direct
comparison camot be made. However, i1t can be observed

that the analytical solutions has much higher Ag as
compared with others. This denotes that the analytical
solutions flow is very high at initial t; and then decreases
rapidly. The reservorr problem is a multiphase flow
problem whereby the transfer of fluids are much more
complex. The components that present in a multiphase
flow is water, oil and gas. Total multiphase matrix-fracture
transfer rate 13 a summation of all the components, while
single phase matrix-fracture transfer rate is having only
the o1l components. Analytical solution camot be
compared directly with results of other shape factors but
it can serves as a reference line. This can be used to
detect shape factor results that yield faster transfer rate
by comparing the gradient and Py,

Two and three set of fractures: Shape factor for two sets
of fractures is used when fractures assumed a matchstick
model (Fig. 3) and three sets of fractures is used when
fractures assumed sugarcube model (Fig. 4).
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Fig. 5. Single set of fractures
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Fig. 6 Two sets of fractures

The comparison for two and three set of fractures are
presented in Fig. 6 and 7, respectively. Both the
results can be analyzed using the same approach
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Fig. 7. Three sets of fractures

discussed for the parallel plate model. It is interesting to
note that at early t,, Warren and Root (1963) shape factor
yields the highest flow as compared with the analytical
solution.
In
highest
(1976)

Warren and Root (1963) has the
rate of change of flow while Kazemi et al.
shape factor produces the lowest
change of flow. These two models can be taken as the
two extreme bounds where  (Quintard and
Whtaker, 1995, Chang, 1993; Lim and Aziz, 1995 and
Coats, 1989) shape factors produce intermediate rate of
change of flow.

Tt is apparent that higher shape factor will results in

general,

rate of

high rate of change of flow. The flow behavior 1s such
that there 1s an 1mtial high flow between matrix-fracture
and then followed by quick drop of flow rate. Figure 8 is
an example of 15=1x1 line injection model investigated
using different shape factors. It showed that the ol

production using shape factor from Warren and



J. Applied Sci., 13 (2): 308-314, 2013

————— Warren and Root (1963)
Lim and Aziz (1995)
+ =+ = Kazemi et al. (1976)
................. Coats (1989)

700

600 - N

Oil rate (STB/D)
[} W ~ w
(= (= (=3 [l
(=] (=] (=] (=3
1 1 1 1

- =
-

(=}
[SS e
S
[=)}
o
=)

Time (year)

Fig. 8: Comparison of different shape factors for a line
injection problem taken from Almengor et al.
(2002)

Root (1963) has the lughest productivity before the fifth
year, followed by a quick drop in the productivity index.
Kazemi et al. (1976) shape factor resulted in the lowest
productivity among the models in the imtial time but the
production picked up after the fifth-year. Not surprisingly,
oil production using shape factors from Coats (1989) and
Lim and Aziz (1995) are bounded in between the results by
Warren and Root (1963) and Kazemi et al. (1976).

CONCLUSION

Comparison of shape factors is presented in
dimensionless parameters, P, and t,. Gradient Pp/t, are
proportional to the matrix-fracture transfer rate. Higher
gradient P./t, indicate higher transfer rate. The
dimensionless comparison displays the different flow
behavior of different shape factors.

NOMENCLATURE

= time, T

= length, L.

= vyolume, L°

= matrix-fracture transfer rate, L/T
= matrix-fracture transfer rate, MAL'T)
= pressure, M/ALT?)

= absolute permeability, 1.2

= shape factor, 1/L°

= wviscosity, M/(LT)

= set of fractures

= porosity, fraction

= compressibility, fraction

= density, M/L’

Do & BT QRT OO0 < H
[

SUBSCRIPTS

= Imitial

= Total

= Matrix

= Infinity

= Fracture

= Dimensionless

Q-""’ga'_"""
|

APPENDIX

Derivation of dimensionless correlation: Equation 13 can
be differentiated with time to obtain Eq. Al:

E[ﬁm7p1}= TE] k_x+ﬁ+£ [pfil_)m} (Al)
alp-p ) ope (LY L) L) p-p

By using finite approximations for first degree
derivative, Eq. Al can be rewritten as Eq. A2:

(Pa),=(P,), _ [EJ[@J (A2)

At ope \LP ) pe-p

For Sufficient small points and if p, = Constant, then:

LA LN S

A gpe, \LF

Substitute Eq. A3 mnto the given Eq. 10, we get:

Q= _Tz [%](pf ~Pn) (A4)

If:

)
duc,L?

1s constant/equivalent, while t varies, then Eq. A2 can be
rewrite into Eq. AS:

ST G0 i 20 WO P (AS)
(P —Da) (), 7 (®:-p)

Substitute Eq. A6 mto Eq. A5, we get Eq. A6:

_opf Pk A6
Q= a, {'ULE (n Pf)} ( )
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