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Abstract—In this paper, subspace-based filters are developed
for restoration of images corrupted by additive white Gaussian
noise (AWGN). The fundamental principle of the subspace-
based technique is to decompose the vector space of the noisy
image into signal-plus-noise subspace and the noise subspace.
Noise reduction is achieved by removing the noise subspace and
estimating the clean image from the remaining image subspace.
Linear estimation of the clean image is performed using two
methods, namely using SSDC esimator and SFDC estimator. The
SSDC is derived by minimizing image distortion while main-
taining the residual noise energy below some given threshold.
On the other hand, SFDC is derived by minimizing the energy
of image distortion while keeping the energy of the residual
noise in each spectral component below some given threshold.
The performance of the subspace-based filters are tested with
simulated images and compared with Wiener filter and wavelet-
based filter. The results shows that the filters outperformed
Wiener filter in terms of PSNR at low noise level.

Index Terms—signal subspace technique, image denoising,
eigendecomposition, AWGN

I. I NTRODUCTION

In many applications such as medical imaging, radio astron-
omy, and remote sensing, captured images are often degraded
by noise. The noise may originate from atmospheric turbu-
lence, relative motion between objects and the camera, and
electronic noise. Although noise can be reduced by improved
image acquisition hardware, in some modalities, such as
coherent imaging, the noise is an inherent part of the imaging
process. Examples of such coherent imaging systems are
synthetic aperture radar (SAR), scanning electron microscope
(SEM), ultrasound (US) and magnetic resonance imaging
(MRI). Hence, noise filtering has becomes an essential part of
imagery systems because noise may degrades image resolution
and hampers any subsequent image processing operations.

The goal of image denoising is to exploit the available
information in the observed image to obtain an estimate of
the noise-free image. In general, there are two main purpose
of noise filtering. Firstly, noise filtering is used as a prepro-
cessing step for further automated machine analysis such as
segmentation and object detection. Secondly, denoised images
are easier to interpret by human observers, aiding in task such
as classifying ice types in SAR images or assessing ultrasound
images.

The AWGN is one of the most commonly occurring noise
in image. It is used to model thermal noise and under certain
conditions it represents the limit of other noise such as photon

counting noise and film grain noise [1]. Removal of AWGN
offers the advantage of being mathematically tractable andthis
has led to a large number of different approaches. Some of the
classical approaches in removal of AWGN includes spatial low
pass filtering [2], [3] and neighborhood averaging [2]. The
major drawback of these approaches is the blurring effect due
to the smoothing operation adopted which yield the loss of
high frequency components carrying edge information.

In addition to the averaging filters, there is noise removal
using wavelet transform. Wavelet based image denoising filter
was originally developed by Donoho and Johnstone [4], [5]. As
an outcome of wavelet theory, denoising in the discrete wavelet
transform (DWT) domain may be stated as a thresholding of
DWT coefficients of the noisy image. The most well-known
thresholding methods include VisuShrink [4] and SureShrink
[5]. Variant of wavelet-based image denoising for removal of
additive noise [6], [7] has been proposed.

The technique of local averaging used in Wiener filter has
the effect of reducing the spatial resolution of images and
blurs edges. On the other hand, the wavelet-based denoising
usually suffers from ringing artifacts which has it highest
impact around edges. Here, we propose two subspace-based
techniques that can reduce the additive white noise with-
out affecting image spatial resolution and edges detail. The
fundamental work of subspace-based technique was in the
area of speech enhancement [8] and here we extend it to 2-
dimensional signals. The noise removal is achieved by nulling
the noise subspace and controlling the noise distribution in
the signal subspace. For white noise the decomposition can
theoretically be performed by applying the Karhunen-Loeve
transform (KLT) to the noisy image. Linear estimator of the
clean image is performed using two techniques. Firstly, spatial-
domain constraint (SSDC) estimator which minimizes the im-
age distortion while constraining the energy of residual noise
and secondly, frequency-domain constraint (SFDC) estimator
which minimizes the energy of image distortion while keeping
the energy of the residual noise in each spectral component
below some given threshold. The fundamental signal and noise
model for subspace methods is that the noise is additive and
uncorrelated with the signal.

The paper is organized as follows. In section II, described
signal and additive noise model, the proposed subspace tech-
nique, and its implementation. Section III presents the perfor-
mance of the proposed techniques in comparison to Wiener
and wavelet filter [9], [10] and section IV concludes the paper.



II. T HE SUBSPACE-BASED TECHNIQUES FORIMAGE

DENOISING

In this section, we consider two type of linear optimal
estimators. Firstly, spatial-domain constraint (SSDC) estima-
tor which minimizes the image distortion while constraining
the energy of residual noise and secondly, frequency-domain
constraint (SFDC) estimator which minimizes the energy of
image distortion while keeping the energy of the residual
noise in each spectral component below some given threshold.
The underlying principle is to decompose the vector space of
the noisy signal into a signal subspace and noise subspace.
The decomposition of the space into two subspaces can be
done using either the singular value decomposition (SVD) or
the eigenvalue decomposition (EVD). The noise removal is
achieved by nulling the noise subspace and controlling the
noise distribution in the signal (signal + noise) subspace.
In this subspace-based method, the noise is assumed to be
additive, white and uncorrelated with the signal.

A. Subspace-Based Spatial Domain Constraints (SSDC) Tech-
nique

We begin with derivation of spatial domain constraints
estimator which minimizes the image distortion while con-
straining the energy of residual noise. Using the signal and
additive noise model,Y = X+N , the error signalǫ obtained
from the linear estimation,̂X = HY is given by

ǫ = X̂ −X = (H − I)X +HN = ǫX + ǫN , (1)

whereǫX represents the image distortion, andǫN represents
the residual noise [8]. Defining the energy of the image
distortion ǭX2, and the energy of the residual noisēǫN 2 as

ǭX
2 = tr

(

E
[

ǫTXǫX
])

, (2)

ǭN
2 = tr

(

E
[

ǫTN ǫN
])

, (3)

whereE [·] is the expected value, the optimum linear estimator
can be obtained by solving the following spatial-domain
constrained optimization problem [8], [11]

min
H

ǭ2X subject to
1

m
ǭ2N ≤ σ, (4)

whereσ is a positive constant.
The optimum estimator is the sense of (4) can be found us-

ing the Kuhn-Tucker necessary conditions for constrained min-
imization [12]. It involves solving a constrained minimization
problem by applying the method of Lagrange multipliers [13].
Specifically,H is a stationary feasible point, if it satisfies the
gradient equation of the Lagrangian,

L(H,λ) = ǭ2X + λ(ǭ2N −mσ)

= tr
(

(H − I)RX (H − I)
T
)

+

λ
(

tr
(

HRNH
T
)

−mσ
)

, (5)

whereλ ≥ 0 is the Lagrange multiplier, and

λ(ǭ2N −mσ) = 0 for λ ≥ 0. (6)

The solution to 5 is a stationary feasible point that satisfies
the gradient equation,∇HL(H,λ) = 0, thus we obtain

∇HL(H,λ) = 2(H − I)RX + 2λHRN = 0, (7)

thus,

HSSDC = RX(RX + λRN )−1. (8)

Since the noise is assumed to be white, thenRN = v2nI where
v2n is the noise variance andI is the identity matrix. Hence,
the solution for the optimum estimatorHSSDC is given as

HSSDC = RX(RX + λv2nI)
−1. (9)

Before the final form of the optimal estimatorHSSDC is
considered, it is worthy to note that there is a strong empirical
evidence indicating that the transformed covariance matrix
of most images by the eigenvectors of theRX have some
eigenvalues small enough to be considered as zeros. This
means that the number of basis vectors for the pure image
is smaller than the dimension of its vectors. The fact that
some of the eigenvalues of matrixRX are close to zero,
indicates that the energy of the clean image is distributed
among a subset of its coordinates and the signal is confined
to a subspace of the noisy Euclidean space. Since all noise
eigenvalues are strictly positive, the noise fills in the entire
vector space of the noisy image. In other word, the vector
space of the noisy image is composed of a signal-plus-noise
subspace and a complementary noise subspace. The signal-
plus-noise subspace or simply the signal subspace comprises
vectors of the clean image as well as of the noise process.
The noise subspace contains vectors of the noise process only.
Using eigendecomposition ofRX = U∆XU

T , (9) can be
expressed as

HSSDC = U∆X

(

∆X + λv2nI
)

−1
UT . (10)

The link between the maximal oriented energy and the
signal subspace as well as between the minimal energy and
the noise subspace were established in [14]. Using the eigen-
decomposition analysis, in which the∆X,i = ∆Y,i − v2n, we
can improve the form of model matrixHSSDC in (10) by
removing the noise subspace and estimating the clean image
from the remaining principal signal subspace

HSSDC = U1∆X1

(

∆X1 + λv2nI
)

−1
UT1 . (11)

In the implementation of SSDC, a proper selection of signal
subspace dimensionr and Lagrangian multiplier,λ is critical
in order to achieve the best noise reduction technique.



B. Subspace-Based Frequency-Domain Constraints (SFDC)
Technique

In the preceding section, the SSDC estimator is derived
by minimizing the energy of signal distortion while keeping
the energy of residual noise below a certain threshold. Now,
instead of having constraint on residual noise energy, the new
estimator is to be derived by imposing a constraint on residual
noise energy on each spectral or frequency component.

The spectral components is defined by the left singular
vectors ui of the noisy matrixY . Suppose that thei-th
spectral component of the residual noise is given byuTi ǫN .
For i = 1, · · · , r, it is required that the energy inuTi ǫN to
be smaller than or equal toαiv2n (0 < αi < 1), whereas for
i = r+1, · · · ,m it is required that the energy inuTi ǫN to be
zero. Hence, the filterH is designed by solving the following
constrained minimization problem:
minH ǭ2X subject to






E
{

∣

∣uTi ǫN
∣

∣

2
}

≤ αiv
2
n, if i = 1, · · · , r

E
{

∣

∣uTi ǫN
∣

∣

2
}

= 0, if i = r + 1, · · · ,m.
(12)

This method shapes the spectrum of the residual noise
by masking it with image features. Thus, more noise is
permitted to accompany high energy spectral components of
the clean signal. Similar to the SSDC method, the constrained
minimization described in (12) can be solved using the method
of Lagrange multipliers. More specifically,H is a stationary
feasible point if it satisfies the gradient equation of Lagrangian,

L(H,λi) = ǫ2X +

r
∑

i=1

λi

(

E
{

∣

∣uTi ǫN
∣

∣

2
}

− αiv
2
n

)

= tr
(

(H − I)RX(H − I)T
)

+

v2n tr
(

ΓλU
THHTU

)

− v2nΓλα, (13)

where Γλ = diag(λ1, · · · , λr) is a diagonal matrix of La-
grange multipliers, andα = diag(α1, · · ·αr). Solving for
∇HL(H,Γλ) = 0, the optimalH must satisfy the following
equation,

HRX + v2n(UΓλU
T )H −RX = 0. (14)

Now, (14) can be simplified using eigendecomposition of
RX = U∆XU

T to

HU∆XU
T + v2n(UΓλU

T )H − U∆XU
T = 0. (15)

After post- and premultiplying the preceding equation withU
andUT , respectively, we get

(I −Q)∆X − v2nΓλQ = 0, (16)

whereQ = UTHU . Equation (16) is known as Lyaponov
equation and can only be solved numerically using the meth-
ods proposed in [15], [16]. There is no explicit solution forH
in (16) but a possible solution is obtained whenQ is diagonal
with elements given by

qii =

{

∆X,i

∆X,i+v2nλi
,

0,

i = 1, · · · , r
i = r + 1, · · · ,m, (17)

and, the estimation matrix,H is given as,

H = U−TQUT . (18)

With gain qii given in (17), the spectral-domain constrained
estimator in (18) can be interpreted as a multiband version of
time-domain constrained estimator in that it uses a different
value of λ for each spectral component [17]. Note that the
Lagrange multipliersλi are frequency specific because of
the spectral constraintsαi imposed in (12). This mean that
with appropriate choice ofλi, one can achieves the desired
spectral constraintsαi and shape accordingly the spectrum of
the residual noise. For a diagonalQ given in (17), we can
compute the energy ofi-th spectral component of the residual
noise as

E
{

∣

∣uTi ǫN
∣

∣

2
}

= E
{

∣

∣uTi HN
∣

∣

2
}

= E
{

tr
(

uTi HN ·NTHTui
)}

= tr
(

uTi H
(

E
{

N ·NT
})

HTui
)

= tr
(

v2nu
T
i

(

UQUT
) (

UQUT
)T
ui

)

= v2ne
T
i QQ

T ei

=

{

v2nq
2
ii,

0,
i = 1, · · · , r
i = r + 1, · · · ,m, (19)

where eTi = [0, 0, · · · , 1, 0, · · · , 0] is a unit vector with the
i-th element equal to one. Assuming equality in the spectral
constraints in (12), we getv2nq

2
ii = αiv

2
n and therefore

qii = (αi)
1/2, i = 1, · · · , r, (20)

and

λi =
∆X,i

v2n

[

(1/αi)
1/2 − 1

]

, i = 1, · · · , r. (21)

Since λi ≥ 0, the Kuhn-Tucker necessary conditions for
constrained minimization are satisfied by the solution in (17).
Equation (20) provides the relationship between the spectral
constraintsαi and the gain of the estimatorqii. The choice
of αi specifies the gains of the estimator and it is normally
chosen as a functions of the signal and noise statistic. Two
choice ofαi as suggested in [8] are

αi =

(

∆X,i

∆X,i + v2n

)ψ1

, (22)

αi = exp

(

−ψ2v
2
n

∆X,i

)

, (23)

whereψi ≥ 1, i = 1, 2, are experimentally determined con-
stants that control noise suppression level and signal distortion.
The second choice ofαi is found to provide more aggressive
noise suppression than that of the first one. The estimation



TABLE I: The value of rankr to be used in calculating the
noise variance in512× 512 images

v
2
n

5 10 15 20 25 30

r 488 488 487 486 486 486

matrixH derived based on spectral constraint can be expressed
as

HSFDC = U−T
1 QUT1 , (24)

whereQ = diag
(

(α1)
1/2

, (α2)
1/2

, · · · , (αr)1/2
)

andαi is
given as in (23). The equation in (22) and (23) are functions
of eigenvalues of the clean covariance image,RX which
is not be readily available in practical application. Using
eigendecomposition analysis, in which the∆X,i = ∆Y,i − v2n
the αi expression in (22) and (23) can be casted in terms of
the eigenvalues ofRY as follows

αi =

(

∆Y,i − v2n
∆Y,i

)ψ1

, (25)

αi = exp

(

− ψ2v
2
n

∆Y,i − v2n

)

. (26)

C. Estimation of Noise Variance

If the noise affecting the image is white, then the noise
variance,v2n fully characterizes the noise. Various variance
estimation techniques are proposed in the literature, such
as using autoregressive model (AR) [18] and using wavelet
transform [4], [5]. In subspace-based techniques, the noise
variance can be estimated using the lastr-trailing end of the
eigenvalues,

v2n =
1

n− r

n
∑

i=r+1

δY,i. (27)

The value ofr in the equation varies with the amount of
noise in the image. For512 × 512 images corrupted with
additive white noise, the value ofr at different noise level
are given in Table I which indicates that for noise variance
between 5 to 30, the number of the right-most (smallest)
singular values are within the range of 24 to 26. The accuracy
in estimating the noise variance is comparable to the robust
median estimator [4], [5].

D. Estimation of Signal Subspace Dimension

Consider an observed matrixY as described in section II-A.
It singular value decomposition (SVD) is given by

Y = Um×n · Sn×n · Vn×n, (28)

in which the matricesU and V are real orthonormal, and
matrix S = diag(β1, · · · , βn) is real pseudo-diagonal with
non-negative diagonal elements. The diagonal elementsβi of
S can be arranged in nonincreasing order and are called the
singular values of the matrixA. The columnsui andvi of U
andV are called the left and right singular vectors of matrixA

respectively. The effective rankr ≤ n of an observed matrix
Y can be determined by using its singular values based on
criteria [19]

β1 ≥ β2 ≥ · · ·βr > τ ≥ βr+1 ≥ · · · ≥ βn. (29)

The selection of threshold boundsτ was proposed in [20]
which is statistically derived using i.i.d random model andis
given by

k ≤ τ ≤
√

(mn)k, (30)

where2vn ≤ k ≤ 2.6vn and vn is the standard deviation of
the noise.

E. Optimum Value of the Control Parameters

The optimum value of the Lagrange multipliers,λ andψ
are empirical one, and need to be determined via experiments.
Thus, the best control parameters are obtained by running the
subspace-based techniques with increasing values ofλ andψ.
The control parameters that give the best performance in terms
of PSNR or SSIM will be used for the subspace filters.

F. Implementation of SSDC-based filter

1) Estimate the noise variance,v2n.
2) Compute the dimension of signal subspace,r.
3) Using the estimatedr in step 2, apply eigendecomposi-

tion onRY , then extract the basis vectors of signal sub-
spaceU1, and their related eigenvalues∆(i)

X = ∆
(i)
Y −v2n.

4) Selectµ, then compute the optimum linear estimator,

HSDC = U1∆X1

(

∆X1 + µv2nI
)

−1
UT1 . (31)

5) Compute the clean image,̂X = HSSDC · Y.

G. Implementation of SFDC-based filter

The spectral-domain constrained subspace method is im-
plemented using spectral constraintαi given in (26). The
implementation steps are as follows,

1) Estimate the noise variance,v2n.
2) Compute the dimension of signal subspace,r.
3) Using the estimatedr in step 2, apply eigendecomposi-

tion onRY , extract the basis vectors of signal subspace
U1 and their related eigenvalues∆Y 1.

4) Use∆Y 1 with (26) andU1 with (24) to find the optimum
linear estimatorHSFDC .

5) Estimated the clean image as

X̂ = HSFDC · Y. (32)

III. R ESULTS

In this section we present denoising performance of the
subspace-based filters on test images shown in Figure 1. The
comparison is made with 3 by 3 Wiener filter and wavelet filter
[9], [10]. The rank of the images is calculated using technique
outlined in Section II-D and it has a value of 350.

The image quality metric to evaluate the filters performance
is Peak Signal-to-Noise Ratio (PSNR). For a noise-free image



(a) (b) (c)

Fig. 1: Test Images. (a) Checkerboard, (b) Barbara, and (c) Boat.

X and a corrupted imageY , the PSNR in decibels is given
by

PSNR = 20 log10

(

255√
MSE

)

, (33)

where the MSE is as defined as

MSE =
1

mn

m
∑

i=1

n
∑

j=1

(X (i, j)− Y (i, j))
2
, (34)

Higher value of PSNR indicates lower noise presence in the
image but it can also mean that there are more texture loss.

In this experiment, the test images were corrupted with
additive white noise at noise variance varied between 5 to
30 and the performance of the subspace-based methods are
compared to Wiener and wavelet filter. The PSNR values
of the reconstruction images are given in Table II which
were obtained from an average of 100 trials. In subsequent
paragraphs, the subspace-based denoising techniques willbe
referred to as SSDC and SFDC filter.

In general, the results show that subspace filters (SSDC and
SFDC) give better performance than Wiener at low noise level,
(PSNR> 24.6 dB), especially for barbara and boat. Both
the SSDC and SFDC give almost similar performance with
average improvement of 1.1 - 1.2 dB over the noisy image
of barbara and boat. The wavelet gives the best performance
among other filters for barbara and boat with an average
improvement of 1.2 dB. The wavelet however performed
poorly in checkerboard image with PSNR improvement of 1.6
dB over the noisy. This can be due to the Gibbs-like artifacts,
like ringing around the edges due to the processing nature of
the transform-based denoising technique. The ringing artifacts
will appear worst around edges with rapid change of pixel
such as in the checkerboard. The subspace filters, on the other
hand give it best performance with the checkerboard with
improvement of 1.7 dB and 1.9 dB for SSDC and SFDC,
respectively. The best performance of subspace filters in the

checkerboard can be attributed to the nature of the image
which has a well structured matrix and this allows the subspace
to perform at its optimal level.

The reconstruction of the test images corrupted with additive
white noise atv2n = 10 are shown in Figure 2. There are
noticeable improvement in the visual quality of the denoised
images by the subspace filters, over two other filters Wiener
and wavalet. Also, there is no blurring or ringing artefactsin
the image.

The different performance between the SSDC and SFDC
can hardly be visualized in the denoised images. However,
from the PSNR value, it can be said that the SFDC should be
used in images with high features, such as barbara whereas the
SSDC is suitable for smooth images, such as boat. However,
this issue need to be further investigated.

Despite being effective, the image denoised by wavelet filter
suffered from ringing artifacts which are clearly visible in
the checkerboard image, in addition to a slight texture and
edge blurring in barbara and boat. Images denoised by Wiener
filter exhibited the worst blurring effect although it is very
successful in reducing the background noise, especially in
barbara and boat. The significant blurring artifact is due tothe
processing nature of Wiener, that uses averaging techniqueto
smooth out the noise. This in turn causes loss in the high
spatial frequency components associated with edges in the
image.

IV. CONCLUSIONS

Spatial domain subspace-based image denoising techniques
for additive white noise is presented. The denoising technique
involves nulling the noise subspace and controlling the noise
contribution in the signal subspace. This is achieved by
optimization criteria which seek to minimize signal distortion
while limiting the residual noise via a control parameter. The
results show that the subspace filters give better performance
than Wiener in terms of PSNR at low noise level. From visual
inspection, subspace-based methods has shown to produce



Fig. 2: Reconstruction of test images, checkerboard, barbara and boat corrupted with additive white noise atv2n = 10. From
left to right; noisy, SSDC, SFDC, Wiener and wavelet.

TABLE II: PSNR values calculated for the test images in Fig.
1

Checkerboard
v
2
n

Noisy SSDC SFDC Wiener Wavelet
5 34.15 53.45 55.15 43.02 43.93
10 28.13 46.51 48.77 37.15 40.90
15 24.61 42.06 45.33 33.88 39.25
20 22.11 39.43 42.60 31.54 38.04
25 20.17 37.11 40.63 29.69 37.07
30 18.59 35.52 38.98 28.17 36.34

Barbara
v
2
n

Noisy SSDC SFDC Wiener Wavelet
5 34.15 35.28 35.13 29.48 36.72
10 28.13 30.15 30.15 28.55 33.32
15 24.61 27.39 27.47 27.45 31.21
20 22.11 25.60 25.71 26.39 29.70
25 20.17 24.30 24.44 25.42 28.55
30 18.59 23.31 23.47 24.54 27.64

Boat
v
2
n

Noisy SSDC SFDC Wiener Wavelet
5 34.15 35.35 35.11 31.59 35.47
10 28.13 30.67 30.55 30.55 32.99
15 24.61 28.14 28.12 29.34 31.25
20 22.11 26.47 26.52 28.17 29.96
25 20.17 25.25 25.36 27.04 28.95
30 18.59 24.29 24.47 26.01 28.15

better quality images compared to Wiener and wavelet filters,
especially in terms edge preservation. It shows that the method
is capable of suppressing the noise in homogeneous regions

and at the same time preserving the edges and fine features. In
addition, the subspace filters suffer neither the blurring effect
of the Wiener filter nor the ringing effect of the wavelet filter.
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