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Abstract—In this paper, subspace-based filters are developed counting noise and film grain noise [1]. Removal of AWGN
for restoration of images corrupted by additive white Gaussan  offers the advantage of being mathematically tractabletiisd
noise (AWGN). The fundamental principle of the subspace- paq|eq to a large number of different approaches. Some of the

based technique is to decompose the vector space of the noisy - . . .
image into signal-plus-noise subspace and the noise subspa classical approaches in removal of AWGN includes spatial lo

Noise reduction is achieved by removing the noise subspacaca Pass filtering [2], [3] and neighborhood averaging [2]. The
estimating the clean image from the remaining image subspac major drawback of these approaches is the blurring effeet du

Linear estimation of the clean image is performed using two to the smoothing operation adopted which yield the loss of
methods, namely using SSDC esimator and SFDC estimator. The high frequency components carrying edge information.

SSDC is derived by minimizing image distortion while main- In addition to th ing filt th . . |
taining the residual noise energy below some given threshal n adaiion to the averaging niters, there IS noise remova

On the other hand, SFDC is derived by minimizing the energy Using wavelet transform. Wavelet based image denoisirgg filt
of image distortion while keeping the energy of the residual was originally developed by Donoho and Johnstone [4], [S]. A
noise in each spectral component below some given threshold an outcome of wavelet theory, denoising in the discrete lgave
The performance of the subspace-based filters are tested Wit y5nsform (DWT) domain may be stated as a thresholding of
simulated images and compared with Wiener filter and wavelet DWT coefficients of the noisy image. The most well-known
based filter. The results shows that the filters outperformed : . h " X
Wiener filter in terms of PSNR at low noise level. thresholding methods include VisuShrink [4] and SureSrin
[5]. Variant of wavelet-based image denoising for removal o
Index Terms—signal subspace technique, image denoising, additive noise [6], [7] has been proposed.
eigendecomposition, AVGN The technique of local averaging used in Wiener filter has
the effect of reducing the spatial resolution of images and
blurs edges. On the other hand, the wavelet-based denoising
In many applications such as medical imaging, radio astromsually suffers from ringing artifacts which has it highest
omy, and remote sensing, captured images are often degradgsact around edges. Here, we propose two subspace-based
by noise. The noise may originate from atmospheric turbtechniques that can reduce the additive white noise with-
lence, relative motion between objects and the camera, and affecting image spatial resolution and edges detaie Th
electronic noise. Although noise can be reduced by improvathdamental work of subspace-based technique was in the
image acquisition hardware, in some modalities, such agea of speech enhancement [8] and here we extend it to 2-
coherent imaging, the noise is an inherent part of the intagidimensional signals. The noise removal is achieved bymulli
process. Examples of such coherent imaging systems #re noise subspace and controlling the noise distribution i
synthetic aperture radar (SAR), scanning electron miapsc the signal subspace. For white noise the decomposition can
(SEM), ultrasound (US) and magnetic resonance imagitigeoretically be performed by applying the Karhunen-Loeve
(MRI). Hence, noise filtering has becomes an essential parttcansform (KLT) to the noisy image. Linear estimator of the
imagery systems because noise may degrades image resolutiean image is performed using two techniques. Firstiytiapa
and hampers any subsequent image processing operationglomain constraint (SSDC) estimator which minimizes the im-
The goal of image denoising is to exploit the availablage distortion while constraining the energy of residuat@o
information in the observed image to obtain an estimate ahd secondly, frequency-domain constraint (SFDC) estimat
the noise-free image. In general, there are two main purpagkich minimizes the energy of image distortion while kegpin
of noise filtering. Firstly, noise filtering is used as a prepr the energy of the residual noise in each spectral component
cessing step for further automated machine analysis suchbatow some given threshold. The fundamental signal andénois
segmentation and object detection. Secondly, denoisegieisnamodel for subspace methods is that the noise is additive and
are easier to interpret by human observers, aiding in task swncorrelated with the signal.
as classifying ice types in SAR images or assessing ultresou The paper is organized as follows. In section II, described
images. signal and additive noise model, the proposed subspace tech
The AWGN is one of the most commonly occurring noiseique, and its implementation. Section Il presents théqgoer
in image. It is used to model thermal noise and under certaimance of the proposed techniques in comparison to Wiener
conditions it represents the limit of other noise such agqho and wavelet filter [9], [10] and section IV concludes the pape

|I. INTRODUCTION



Il. THE SUBSPACEBASED TECHNIQUES FORIMAGE

DENOISING A@, —ma) =0 for A > 0. (6)
In this section, we consider two type of linear optimal

estimators. Firstly, spatial-domain constraint (SSDQjnes The solution to 5 is a stationary feasible point that sassfie
tor which minimizes the image distortion while constraginthe gradient equatiorVV y L(H, \) = 0, thus we obtain
the energy of residual noise and secondly, frequency-domai
constraint (SFDC) estimator which minimizes the energy of
image distortion while keeping the energy of the residual
noise in each spectral component below some given threshqﬁhsy
The underlying principle is to decompose the vector space of
the noisy signal into a signal subspace and noise subspace.
The decomposition of the space into two subspaces can be Hsspc = Rx(Rx +ARy) ™. (8)
done using either the singular value decomposition (SVD) ar. L i 9
the eigenvalue decomposition (EVD). The noise removal 1 nce the NoOISe IS gssumed “? be Wh'te' tR@n: “7}] where
achieved by nulling the noise subspace and controlling the 1S the, noise variance antlis t,he identity matr!x. Hence,
noise distribution in the signal (signal + noise) subspack'® Solution for the optimum estimatéfsspc is given as
In this subspace-based method, the noise is assumed to be
additive, white and uncorrelated with the signal. Hsspc = Rx(Rx + M2I)~ L 9)

VuL(H,\) =2(H—I)Rx + 2A\HRy =0,  (7)

A. Subspace-Based Spatial Domain Constraints (SSDC) Teﬁléi‘ore the final form of the optimal estimatdisspe is

nique considered, it is worthy to note that there is a strong ermgiiri
We begin with derivation of spatial domain constraintgyidence indicating that the transformed covariance matri
estimator which minimizes the image distortion while corof most images by the eigenvectors of tie have some
straining the energy of residual noise. Using the signal aggjenvalues small enough to be considered as zeros. This
additive noise modell” = X + N, the error signat obtained means that the number of basis vectors for the pure image
from the linear estimationX = HY is given by is smaller than the dimension of its vectors. The fact that
e=X—-X=(H-I)X+HN =ex +en, (1) Ssome of the eigenvalues of matrikx are close_ to zero,
indicates that the energy of the clean image is distributed
whereex represents the image distortion, and represents among a subset of its coordinates and the signal is confined
the residual noise [8]. Defining the energy of the image a subspace of the noisy Euclidean space. Since all noise
distortionex?, and the energy of the residual noise” as  eigenvalues are strictly positive, the noise fills in theirent
vector space of the noisy image. In other word, the vector

x> =tr (E [6§6x}) 5 (2) space of the noisy image is composed of a signal-plus-noise
subspace and a complementary noise subspace. The signal-
N =tr (E [E%GN}) ’ 3) plus-noise subspace or simply the signal subspace coraprise

vectors of the clean image as well as of the noise process.
whereF [] is the expected value, the optimum linear estimatdthe noise subspace contains vectors of the noise procegs onl
can be obtained by solving the following spatial-domaitsing eigendecomposition aRxy = UAxU”, (9) can be

constrained optimization problem [8], [11] expressed as
1
c 2 : -2 _
min & subject to—éy <o, (4) Hsspe = UAx (Ax + \21) uT. (10)

whereo is a positive constant. ) ) )

The optimum estimator is the sense of (4) can be found us-1he link between the maximal oriented energy and the
ing the Kuhn-Tucker necessary conditions for constrainizd m Signal subspace as well as between the minimal energy and
imization [12]. It involves solving a constrained minimiian e Noise subspace were established in [14]. Using the €igen
problem by applying the method of Lagrange multipliers [13fl€cOmposition analysis, in which they,; = Ay, — v, We

Specifically, H is a stationary feasible point, if it satisfies th&@n improve the form of model matriXisspc in (10) by
gradient equation of the Lagrangian, removing the noise subspace and estimating the clean image

from the remaining principal signal subspace

L(H,\) = é + M\ — -
(H,}) =& + Aley —mo) . Hsspc = UiAxy (Axi + Av2l) ' Ul (11)
=t ((H - D) Rx (H-1)") +
N (tr (HRNHT) B mU) 7 ) In the implementation of SSDC, a proper selection of signal

subspace dimensionand Lagrangian multiplier) is critical
where\ > 0 is the Lagrange multiplier, and in order to achieve the best noise reduction technique.



B. Subspace-Based Frequency-Domain Constraints (SFDC)

Technique gii = ﬁ;’%, t=1,---,r (17)
In the preceding section, the SSDC estimator is derived “ 0, i=r4le,m,

by minimizing the_ energy of signal dlstorthn while keepmgdnd, the estimation matris/ is given as,

the energy of residual noise below a certain threshold. Now,

instead of having constraint on residual noise energy, &ve n

estimator is to be derived by imposing a constraint on redidu

noise energy on each spectral or frequency component.  Wwith gain ¢;; given in (17), the spectral-domain constrained
The spectral components is defined by the left singulagtimator in (18) can be interpreted as a multiband versfon o

vectors u; of the noisy matrixY. Suppose that the-th time-domain constrained estimator in that it uses a differe

spectral component of the residual noise is givenBlyx. value of A for each spectral component [17]. Note that the

H=U"TQuT". (18)

Fori = 1,---,r, it is required that the energy in/ ey t0  Lagrange multipliers); are frequency specific because of
be smaller than or equal te;v; (0 < a; < 1), whereas for the spectral constraints; imposed in (12). This mean that
i=r+1,---,mitis required that the energy i/ ey to be with appropriate choice of\;, one can achieves the desired
zero. Hence, the filtef] is designed by solving the following spectral constraints; and shape accordingly the spectrum of
constrained minimization problem: the residual noise. For a diagon@l given in (17), we can
ming € subject to compute the energy afth spectral component of the residual
E |u;fFeN|2 <o, ifi=1,--0 7 noise as
E ’uTe ’2 =0 ifi=r+1,---,m (12) 2 2
PN ’ e B{|ufen|"} = B{|ul 0N}
This metho_d shapgs the spectrum of the residua! noise _ E{tr (UTHN-NTHTUZ-)}
by masking it with image features. Thus, more noise is K
permitted to accompany high energy spectral components of =1 (“?H (E {N : NT}) HT“i)
the clean signal. Similar to the SSDC method, the constdaine —tr (’U?lu? (UQUT) (UQUT)T uz)
minimization described in (12) can be solved using the naktho -
of Lagrange multipliers. More specifically/ is a stationary =vpe; QQ7 e
feasible point if it satisfies the gradient equation of Laxgian, B { vigZ, i=1,---,r (19)
0, i=r+1,---,m,
LHAN) =S+ A (E{\uZTeNf} _ aivi) whereef = [0,0,--,1,0,---,0] is a unit vector with the
= i-th element equal to one. Assuming equality in the spectral
= tr ((H - I)Rx(H — I)T) I constraints in (12), we get?¢? = «;v2 and therefore
U,QL tr (FXUTHHTU) — 'U7211—‘>\a7 (23) 0 = (Ozi)l/2, i=1,- (20)
whereT", = diag\y,---,\-) is a diagonal matrix of La-
L . ) and

grange multipliers, andx = diagaq,- - «,). Solving for Ax; 12 ,
VyL(H,T) = 0, the optimalH must satisfy the following A= =55 [(1/041') - 1} ;=1 (21)
equation, "

Since \; > 0, the Kuhn-Tucker necessary conditions for
HRx +v2(UT\UT)H — Ry = 0. (14) constr_ained minimi_zation are sat@sﬁed_by the solution i) (1
Equation (20) provides the relationship between the sakectr
Now, (14) can be simplified using eigendecomposition @fonstraintse; and the gain of the estimatas;. The choice
Rx =UAxU" to of a; specifies the gains of the estimator and it is normally
chosen as a functions of the signal and noise statistic. Two

HUAXUT + 2 (UT\UTVH — UAxUT = 0. (15) choice ofa; as suggested in [8] are

After post- and premultiplying the preceding equation with Axi V1
andUT, respectively, we get Y=\ A+ w2 ’ (22)
_ 2 — 2
(I Q)AX vnFAQ 07 (16) i = exp (_ i?vn) , (23)
X,i

where Q = UTHU. Equation (16) is known as Lyaponov
equation and can only be solved numerically using the methherev; > 1, i = 1,2, are experimentally determined con-
ods proposed in [15], [16]. There is no explicit solution fér stants that control noise suppression level and signairtiish.

in (16) but a possible solution is obtained wh@ris diagonal The second choice af; is found to provide more aggressive
with elements given by noise suppression than that of the first one. The estimation



TABLE I: The value of rank- to be used in calculating the rggpectively. The effective rank < n of an observed matrix
noise variance Irb12 x 512 images Y can be determined by using its singular values based on
criteria [19]

v2 5 10 15 20 25 30

488 488 487 486 486 486
r Bl252Z"'ﬂ7‘>725r+12"'25n- (29)

The selection of threshold boundswas proposed in [20]
matrix H derived based on spectral constraint can be expresseuch is statistically derived using i.i.d random model d@sd

as given by
Hsppe = Uy "QUY, (24)
k<71 <+ (mn)k, 30
where @ = diag((a1)'/, (a2)"/? - - ,<ar>”22 and a; is - (_ ) . ( )
given as in (23). The equation in (22) and (23) are functioN¢ere2v, < k < 2.6v, andwv, is the standard deviation of

of eigenvalues of the clean covariance imadgy which the noise.
is not be readily available in practical application. Usin
eigendecomposition analysis, in which the; ; = Ay; — v2

n

the o; expression in (22) and (23) can be casted in terms of 1€ OPptimum value of the Lagrange multipliers,and v
the eigenvalues oRy as follows are empirical one, and need to be determined via experiments

Thus, the best control parameters are obtained by runnéng th
<AY1' _ 2 >w1 subspace-based techniques with increasing valuasamid .
Q= y )

€. Optimum Value of the Control Parameters

Ay = (25)  The control parameters that give the best performancenmster
. of PSNR or SSIM will be used for the subspace filters.

2
; = exp <—%) . (26) F. Implementation of SSDC-based filter
v 1) Estimate the noise variance?.

2) Compute the dimension of signal subspace,

If the noise affecting the image is white, then the noise 3) Using the estimated in step 2, apply eigendecomposi-
variance,v? fully characterizes the noise. Various variance tion on Ry, then extract the basis vectors of signal sub-
estimation techniques are proposed in the literature, such spacd’;, and their related eigenvalugs? = A —12.
as using autoregressive model (AR) [18] and using wavelet4) Select;, then compute the optimum linear estimator,
transform [4], [5]. In subspace-based techniques, theenois

C. Estimation of Noise Variance

-1
variance can be estimated using the lastailing end of the Hspe =UriAx1 (Axy +pop)  UY. (31)
eigenvalues, 5) Compute the clean imag& = Hsspe - Y.
2 = 1 i Sy . (27) G. Implementation of SFDC-based filter
R The spectral-domain constrained subspace method is im-

The value ofr in the equation varies with the amount oflémented using spectral constrainf given in (26). The
noise in the image. FoB12 x 512 images corrupted with Implementation steps are as follows,
additive white noise, the value of at different noise level 1) Estimate the noise variance’.
are given in Table | which indicates that for noise variance 2) Compute the dimension of signal subspace,
between 5 to 30, the number of the right-most (smallest)3) Using the estimated in step 2, apply eigendecomposi-
singular values are within the range of 24 to 26. The accuracy tion on Ry, extract the basis vectors of signal subspace
in estimating the noise variance is comparable to the robust U; and their related eigenvalu@sy ;.
median estimator [4], [5]. 4) UseAy; with (26) andU; with (24) to find the optimum

linear estimatot s pc.

5) Estimated the clean image as

Consider an observed matrik as described in section II-A. .
It singular value decomposition (SVD) is given by X = Hsrpc Y. (32)

IIl. RESULTS

D. Estimation of Signal Subspace Dimension

Y = Unxn - Snxn * Vaxn, 28 . . -
* x x (28) In this section we present denoising performance of the

in which the matriced/ and V' are real orthonormal, and subspace-based filters on test images shown in Figure 1. The
matrix S = diag(f1,---,Bn) is real pseudo-diagonal with comparison is made with 3 by 3 Wiener filter and wavelet filter
non-negative diagonal elements. The diagonal elementd [9], [10]. The rank of the images is calculated using techaiq

S can be arranged in nonincreasing order and are called thelined in Section II-D and it has a value of 350.

singular values of the matrid. The columnsa; andv; of U The image quality metric to evaluate the filters performance
andV are called the left and right singular vectors of matfix is Peak Signal-to-Noise Ratio (PSNR). For a noise-free éanag



@ (b) (©
Fig. 1: Test Images. (a) Checkerboard, (b) Barbara, and ¢a}.B

X and a corrupted imag¥, the PSNR in decibels is givencheckerboard can be attributed to the nature of the image

by which has a well structured matrix and this allows the subspa
to perform at its optimal level.

PSNR = 20log;, ( 255 ) : (33) The reconstruction of the test images corrupted with adkliti

VMSE white noise atv? = 10 are shown in Figure 2. There are

where the MSE is as defined as noticeable improvement in the visual quality of the dendise

images by the subspace filters, over two other filters Wiener
1 & and wavalet. Also, there is no blurring or ringing artefaots
MSE =-S5 (X () =Y ()%, B4 the image. 9 0T Tngmng
=1j=1 The different performance between the SSDC and SFDC
Higher value of PSNR indicates lower noise presence in than hardly be visualized in the denoised images. However,
image but it can also mean that there are more texture losfrom the PSNR value, it can be said that the SFDC should be
In this experiment, the test images were corrupted witksed in images with high features, such as barbara whereas th
additive white noise at noise variance varied between 5 &5DC is suitable for smooth images, such as boat. However,
30 and the performance of the subspace-based methodsthigissue need to be further investigated.
compared to Wiener and wavelet filter. The PSNR valuesDespite being effective, the image denoised by wavelet filte
of the reconstruction images are given in Table Il whichuffered from ringing artifacts which are clearly visible i
were obtained from an average of 100 trials. In subsequéhe checkerboard image, in addition to a slight texture and
paragraphs, the subspace-based denoising techniquesewiledge blurring in barbara and boat. Images denoised by Wiener
referred to as SSDC and SFDC filter. filter exhibited the worst blurring effect although it is yer
In general, the results show that subspace filters (SSDC augcessful in reducing the background noise, especially in
SFDC) give better performance than Wiener at low noise Jevblarbara and boat. The significant blurring artifact is duth&o
(PSNR > 24.6 dB), especially for barbara and boat. Bothrocessing nature of Wiener, that uses averaging techmigue
the SSDC and SFDC give almost similar performance wigmooth out the noise. This in turn causes loss in the high
average improvement of 1.1 - 1.2 dB over the noisy imaggatial frequency components associated with edges in the
of barbara and boat. The wavelet gives the best performanz@ge.
among other filters for barbara and boat with an average
improvement of 1.2 dB. The wavelet however performed
poorly in checkerboard image with PSNR improvement of 1.6 Spatial domain subspace-based image denoising techniques
dB over the noisy. This can be due to the Gibbs-like artifact®r additive white noise is presented. The denoising teqmni
like ringing around the edges due to the processing natureimfolves nulling the noise subspace and controlling theseoi
the transform-based denoising technique. The ringinfpatti contribution in the signal subspace. This is achieved by
will appear worst around edges with rapid change of pixeptimization criteria which seek to minimize signal diston
such as in the checkerboard. The subspace filters, on the othlkile limiting the residual noise via a control parametaneT
hand give it best performance with the checkerboard witlesults show that the subspace filters give better perforean
improvement of 1.7 dB and 1.9 dB for SSDC and SFDGhan Wiener in terms of PSNR at low noise level. From visual
respectively. The best performance of subspace filtersan fihnspection, subspace-based methods has shown to produce

IV. CONCLUSIONS



Fig. 2: Reconstruction of test images, checkerboard, lbaraad boat corrupted with additive white noisevat= 10. From
left to right; noisy, SSDC, SFDC, Wiener and wavelet.

TABLE II: PSNR values calculated for the test images in Figynq at the same time preserving the edges and fine features. In
1 addition, the subspace filters suffer neither the blurrifigoe

Checkerboard of the Wiener filter nor the ringing effect of the wavelet filte
v2 | Noisy | SSDC | SFDC | Wiener [ Wavelet
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