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ABSTRACT 

Model predictive control (MPC) is one of the most successful controllers in industries and 

widely applied in petroleum refining and petrochemical processes. Its inherent model-based 

strategy, however, renders it sensitive to changes that occur when the plants operate outside 

the boundaries of its original operating conditions. In this paper, a nonlinear empirical model 

based on parallel orthonormal basis function-neural networks structure, which has been 

shown to be able to extend the applicable regions of the model, is evaluated for its multi-step 

ahead prediction capability and compared to the conventional neural networks models with 

different scaling procedures. It has been shown that the nonlinear model exhibited sufficient 

multi-step ahead prediction capability that renders it a promising candidate for MPC 

applications that can potentially improve the closed-loop control performance in extended 

regions and this is important in retaining the positive benefits of MPC in industries. 

 

INTRODUCTION 

 Industries nowadays are becoming large and complex and highly energy-intensive. 

Petroleum refining processes, in particular, consume substantial energy and are considered as 

the most energy-intensive manufacturing industry in the US. One of the technologies that 

make existing assets more energy efficient is advanced process control (APC) (Wakasugi and 

Sueyoshi 2010). However, model predictive control (MPC), which is the heart of APC 

system, are generally sensitive to any changes in the process conditions on which the original 

implementation was based. Any corresponding adjustments need to be made to the models 

requires re-testing and re-modeling which are very expensive from maintenance point of 

view. Hence, MPC-relevant nonlinear empirical models with extended applicable regions are 

highly desirable so that subsequent reduction in maintenance cost may be achieved. 
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Linear-and-nonlinear-based empirical models seem to be an interesting alternative for 

extending the applicable regions of the model (i.e. extrapolation enhancement) in terms of the 

wider range of possible combinations that can be explored. In particular, the parallel 

integration of linear-and-nonlinear models holds much potential as the usage of residuals of 

the linear model ensures that a reasonable model is always obtained, the overall nonlinear 

model will always be as good as or better than the linear model used, and the opportunity of 

the underlying nonlinear characteristics to be captured by the residuals (Ardalani-Farsa and 

Zolfaghari 2010, Nelles 2001, Sjöberg et al. 1995).  

An interesting approach is the use of integrated linear partial least-squares (PLS) and 

nonlinear static feed-forward neural network in parallel in a structure known as extended 

Wiener model (Zhao et al. 2001). The methods used, however, involved complex procedures. 

Another approach is the two-point gain-scheduling method using a static neural network 

model and a quadratic difference equation (Piche et al. 2000). Though excellent closed-loop 

performances have been shown in both (Zhao et al. 2001) and (Piche et al. 2000) under 

various set-point and load changes, no extrapolation analysis is discussed. The objective 

function used in the nonlinear optimization problem of (Piche et al. 2000) also contains 

higher number of terms in comparison to the standard two terms (desired outputs and input 

move suppressions) normally encountered in nonlinear MPC application.  An integrated 

linear state space model with neural networks model structure has also been reported for the 

identification and control of a one-degree-of-freedom vibration system (Yasui et al. 1996), 

however, no analysis is considered in the extended regions of the model developed.   

A recently developed parallel Orthonormal Basis Function (OBF)-neural networks 

(NN) model have shown significant improvement in extending the applicable regions of the 

model under open-loop conditions in comparison to other conventional models (Zabiri et al. 

2013). Despite the promising benefits, however, the results reported are based on open-loop 
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simulation studies only. For any model to be useful in the nonlinear model-based predictive 

controller framework, an important facet is the model capability to perform satisfactory 

multi-step ahead predictions. Hence, this paper aims to evaluate and study the multi-step 

ahead prediction analysis of the parallel OBF-NN model and compared the results with 

conventional neural networks models scaled using standard scaling methods and spread 

encoding techniques. 

This paper is organized as follows. In the next section, the multi-step ahead prediction 

analysis using the parallel OBF-NN model is discussed. The comparison methods using 

conventional neural networks with two types of scaling procedures are also presented. 

Afterwards, the results and discussions are presented using a nonlinear benchmark case study 

frequently encountered in nonlinear systems and control. Finally conclusions are drawn. 

 

ALGORITHMS AND METHODS 

Parallel OBF-NN multi-step ahead predictor 

The methods of calculating multi-step ahead prediction using OBF-NN model is based on the 

recursive prediction strategy. Only one model is utilized for making the prediction in the 

recursive prediction strategy (Cheng et al. 2006, Girard et al. 2002). A sequential algorithm 

based on the knowledge of current values of u and y together with the OBF-NN system model 

gives the h-step-ahead prediction. For a single input single output system with a multi-layer 

perceptron neural network with one hidden layer in parallel with a linear OBF model, overall 

equation is given by 
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where the nonlinear neural network function approximation is trained with regression vectors 

consisting of previous plant inputs and previous residuals of the linear model, 

)](ˆ,),1(ˆ),(,),1([)1( mkykymkukukx rr   . Also RR :,  are the nonlinear 

activation functions (e.g. hyperbolic tangent etc.), b are the biases, K is the number of hidden 

neurons, and the weights of the network are denoted by Kiw ji ,,1,1

,   (with ith neuron and 

jth input, in this case 1j ) for the first layer, and Kiwi ,,1,2   for the second layer. N is the 

number of orthonormal basis filters, c are the optimal OBF model parameters, Lj(q) are the 

orthonormal basis filters, and q is the forward shift operator 

From (1), the OBF-NN model prediction at the k + 1 time instant can be derived as: 

))](([)1(ˆ)1(ˆ 2 kxfbkyky OBFOBFNN  
                                                                 (2)                                                     

Extending the prediction one-step further, ŷ(k+2) can be obtained, and generally, the h-step 

ahead predictor can be derived as follows: 

))]1(([)(ˆ)(ˆ 2  hkxfbhkyhky OBFOBFNN 
                                                       (3)                                            
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                                                                   (4) 

In equation (4), the output sequence for h-step ahead prediction for the linear OBF model 

ŷOBF(k+h) is a function of the input sequence up to instant u(k+h-1) (Tufa 2009). The multi-

step ahead predictors for the residuals network in equation (4) also adopted the recursive 

prediction strategy (Gomm et al. 1996). 
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Figure 1 illustrates an example of OBF-NN that acts as a multi-step predictor under the 

assumption of my = 2, mu = 1, d = 1 and prediction horizon P = 3. 

 

Fig. 1 OBF-NN -based multi-step ahead predictor employing recursive prediction method 

 

Neural networks based multi-step ahead predictor 

The output of the nonlinear NN model can be given as follows: 
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where the regression vectors consisting of previous plant inputs and previous process outputs. 

From (5), the NN model output at the k + h time instant can be derived as: 

))]1(([)(ˆ 2  hkxfbhky NN 
                                                                               (6)                                            

where  
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Similar to the residuals network in previous section, the multi-step ahead prediction for the 

conventional NN is done via recursive prediction.  
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The multi-step ahead prediction capability of the proposed OBF-NN model is to be tested 

before the model is deemed suitable to be applied in the NMPC framework. With regards to 

this objective, the comparison is to be made with the conventional NN network developed 

using two different scaling techniques: (1) standard scaling method which has been widely 

used in various applications, and (2) spread encoding technique proposed by (Gomm et al. 

1996). The second method is introduced as a possible measure of improvement (if any) for 

the long range prediction capability of conventional MLP neural network model.  

In the standard scaling method, the following equation is used to normalize the input-output 

data into the range of [-1,1] using  
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                                                                                                (8) 

The spread encoding technique is described in detailed by (Gomm et al. 1996).  Assume that 

the original data range is given by  maxmin , rrr . Also, Nt is the total number of nodes used 

for the coding and decoding steps, N0 is the number of nodes on either side of the variable 

range, and 1 . The Spread-encoding method to code and decode a value r involves the 

following steps: 

Encoding steps: 

1. Scale r to the normalized range by 
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                                                                                                (9) 

2. Code the data to the Nt network nodes by 
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where ci cNia  0  and cc is called the offset term that shifts the position of the range 

limits on the nodes and is set to a value of 0.5  for the work used in this thesis as it is found to 

be sufficient for accurate coding and decoding process. In addition, the total number of nodes 

and the number of nodes on either side of the variable range are set to 6tN  and 20 N , 

respectively. Also, )(a is the sigmoidal function centred at xSE: 
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
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
                                                                                          (11) 

where SE values control the width of the node excitations. It is found that for the work 

related in this research, 2SE provides sufficient accuracy for the coding and decoding 

process.  

3. Scale the excitation of each node to the range ]9.0,1.0[  using a fixed linear relationship. 
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Decoding steps: 

1. Apply the inverse of the scaling relationship used in Step 3 of the coding procedure to 

descale the node excitations from the range ]9.0,1.0[  back to their original range. 
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2. Decode the network output back to the normalized range using 
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3. Apply the inverse of the scaling relationship used in Step 1 of the coding procedure to 

determine the final decoded value r. 

min
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RESULTS AND DISCUSSIONS 

Case study description 

The van de Vusse reactor (Vojtesek et al. 2004) is shown in Figure 2. A reactant A is to be 

converted to the desired product B, but the product B degrades to product C. In addition to 

these consecutive reactions, a high-order parallel reaction occurs by which the reactant A is 

converted to by-product D. 

CBA
kk
 21

 

DA
k
 32  

The mathematical model of this reactor is described by the following set of ordinary 

differential equations (ODE): 

  2
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                                                                                (16) 

 



10 
 

 

Fig. 2. The van de Vusse reactor 
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The net heat of reaction (∆Hr) for the above reactions is expressed as: 

2
332211 ABAr ckhckhckhH 

                                                                        (20) 

 

where Δhi refers to individual heat of reactions. Nonlinearity can be found in reaction rates 

(kj) which are described via the Arrhenius expression: 
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where k0,j represents the pre-exponential factors and Ej are activation energies. Fixed 

parameters of the system given by (Vojtesek et al. 2004) are shown in Table 1.  

The nonlinear system identification is carried out for single-input single-output 

system by considering the dynamic characteristics from the changes in the space velocity, 

Fv=qr/Vr (hr-1), and the product outlet concentration, CB (mol/L). 

 

Table 1. Parameters for the van de Vusse reactor 

k01 = 1.287x1012 hr-1 cpc = 2.0 kJ/kg·K 

k02 = 1.287x1012 hr-1 ρr = 0.9342 kg/L 

k03 = 9.043x109 hr-1 qr = 140.19 L/hr 

E1/R = 9758.3 K Qc = -1113.5 kJ/hr 

E2/R = 9758.3 K U = 4032 kJ/hr·m2·K 

E3/R = 8560 K Ar = 0.215 m2 

h1 = -4.2 kJ/mol cA0 = 5.1 mol/L 

h2 = 11 kJ/mol cB0 = 0 mol/L 

h3 = 41.85 kJ/mol Tr0 = 387.05 K 

Vr = 10 L  mc = 5 kg 

cpr = 3.01 kJ/kg·K  

 

 

Multi-step ahead prediction comparison analysis 

Figure 3 shows the input-output data set for the van de Vusse reactor for the model 

development phase (k < 6000) and the out-of-sample test set (k > 6000) for the multi-step-

ahead prediction analysis of the proposed OBF-NN model. The estimated pole and OBF 

parameters using 6 Laguerre filters are 
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9408.0ˆ p  

cOBF-NN = [-8.5179x10-4 -7.6897x10-4 -2.8837x10-4 -0.0010 1.7712x10-4 -0.0014] 

The identified residuals network for the OBF-NN model with the lowest MSE on the 

validation set has the following configuration: 

resNN: [4-5-1 neurons with tansig-linear transfer functions] 

 The corresponding NN model with standard scaling method has 4-20-1 neurons, whereas the 

NN model scaled with spread encoding technique (referred to as NNSE model in this paper) 

has 24-7-6 neurons in the input-hidden-output layers. Hyperbolic tangent sigmoid transfer 

functions in the hidden layer are applied to all models.  

The resulting multi-step ahead prediction performances of the NN, NNSE and OBF-

NN models are as shown in Figure 4. It is observed that the prediction error for the NNSE 

model almost approximate a horizontal line for 3 < h < 8. In contrast, NN prediction 

capability deteriorates at a much faster rate than the other models. In this case, the OBF-NN 

gives the lowest multi-step ahead prediction errors for all h.  Figure 5 shows the 

corresponding output CB performance for 4-step ahead (Figure 5(a)) and 7-step ahead (Figure 

5(b)) predictions. As the magnitude of the prediction error in Figure 5 is small, all models 

seem to be able to predict the output CB satisfactorily. 
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Fig. 3 Input-output data set for multi-step-ahead predictions analysis for van de Vusse reactor 

 

Figure 4 Effect of prediction horizon on the model performances 
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(a)  

(b)  

Figure 5 Performance of NN, NNSE and OBF-NN models,  (a) four-step ahead predictions; 

(b) seven-step ahead predictions 
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both NN and NNSE models.  It is observed that the prediction errors for both the NN and 

NNSE models deteriorate significantly in the extended region.  

The +14% change in Fv results in the output CB to go lower than the original limit of 

the training range of 0.65 mol/L. The output CB performance for 4-step ahead and 7-step 

ahead predictions is shown in Figure 7, and it is clearly seen that the parallel OBF-NN model 

far supersedes the other models in providing accurate predictions on the output behaviour 

even in the extended region. The various encode and decoding procedures inherent in the 

spread encoding technique renders the NNSE model unable to predict accurately in the 

extended region. 

 

Figure 6 Effect of prediction horizon on the model performances for data in extended region 

(+14% change in Fv beyond the original training range) 

 

1 2 3 4 5 6 7 8 9 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

h-step ahead prediction

M
S

E

 

 

NN

NNSE

OBF-NN



16 
 

(a)  

(b)  

Figure 7 Performance of NN, NNSE and OBF-NN models for data in extended region (+14% 

change in Fv beyond the original training range),  (a) four-step ahead predictions; (b) seven-

step ahead predictions 
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prediction capability as the conventional NN model scaled using the spread encoding 

technique. Based on the results on multi-step ahead prediction analysis between OBF-NN and 

conventional NN scaled using standard normalization procedure as well as the spread 

encoding technique, it can be concluded that the OBF-NN model was able to provide 

satisfactory multi-step ahead prediction values similar to the conventional NN model. It can 

also be concluded that the OBF-NN model was superior in comparison to the other two 

models in providing more accurate multi-step ahead predictions in extended regions beyond 

the original data range used to develop the model. This shows the promising potential of 

embedding the parallel OBF-NN model in the framework of nonlinear MPC to improve the 

overall closed-loop performance over regions extended beyond the original training phase. 

This is certainly a promising advantage as the parallel OBF-NN model structure has the 

potential to allow the nonlinear MPC to be applicable to a wider operating condition. This 

subsequently implies lesser requirements on re-training frequency that may result in reduced 

maintenance cost and helps to retain the positive benefits of MPC applications in process 

industry. 
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