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Abstract 
This paper presents a new infinite-acting radial-flow analysis procedure for estimating horizontal and vertical permeability 
solely from pressure transient data acquired at an observation probe during an interval pressure transient test (IPTT) conducted 
with a single-probe or dual-packer module. The procedure is based on new infinite-acting radial-flow equations that apply for 
all inclination angles of the wellbore in a single-layer, 3D anisotropic, homogeneous porous medium. The equations for 2D 
anisotropic cases are also presented and are derived from the general equations given for the 3D anisotropic case. It is shown 
that the radial-flow equation presented reduces to the Prats’ equation assuming infinite-acting radial flow at an observation 
point along a vertical wellbore in isotropic or 2D anisotropic formations of finite bed thickness. 

The applicability of the analysis procedure is demonstrated by considering synthetic and field probe-probe and packer-
probe IPTT data. The results indicate that the procedure provides reliable estimates of horizontal and vertical permeability 
solely from observation-probe pressure data during radial flow for vertical, horizontal, and slanted wellbores. Most 
importantly, the analysis does not require that both spherical and radial flow prevail at the observation probe during the test. 

Introduction 
Permeability and permeability anisotropy are some of the most important parameters for both reservoir management and well 
performance. Permeability and its anisotropy strongly affect all reservoir displacement processes. Thus, estimation of the 
individual values of horizontal and vertical permeability is becoming increasingly important as emphasis shifts from primary 
to secondary and tertiary recovery. Interval pressure transient testing (IPTT) using packer-probe or probe-probe wireline 
formation testers provides dynamic permeability and anisotropy information with increased vertical resolution along the 
wellbore. The test can be conducted by withdrawing fluid with a single-probe formation testing tool (Fig. 1) or a dual-packer 
formation testing tool(Figs. 2 and 3) (e.g., see Zimmerman et al. 1990; Goode and Thambynayagam 1992; Pop et al. 1993; 
Kuchuk et al. 1994). Fig. 1 shows a schematic of an observation probe with a singleprobe flowing (or simply, a sink probe), 
whereas Fig. 2 is a schematic for a dual-packer module. In these figures the wellbore is vertical. (For more information on the 
terms “vertical” and “horizontal,” see Appendix A entitled as “Terminology.”) Fig. 3 illustrates the case of a dual-packer 
module in an inclined wellbore; likewise, the single-probe module can be deployed in an inclined well (not shown). 
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Fig. 1—Schematic diagram of a single-probe tool Fig. 2—Schematic diagram of a dual-packer tool 
with an observation probe in a vertical wellbore. with an observation probe in a vertical wellbore. 
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Fig. 3—Schematic diagram of a dual-packer tool with an observation probe in an inclined wellbore. 

The transient pressure response at an observation probe during an IPTT has been studied in great detail for the case of an 
unbounded formation in the vertical direction (i.e., spherical flow). For example, Zimmerman et al. (1990) and Goode and 
Thambynayagam (1992) describe methods to determine horizontal (kh) and vertical permeability (kv) from observation-probe 
spherical-flow response when flowing through a single-probe tool. Their methods require two observation probes—one 
positioned on the opposite side of the borehole on the same horizontal plane as the sink probe and the other displaced 
vertically on the same azimuthal plane as the sink probe. Although Goode and Thambynayagam present an analytical equation 
for the case of a finite-thickness formation, they do not provide any method to use the equation to determine permeability. 
Furthermore, they do not disclose methods for the case of flow through a dual-packer tool. Onur et al. (2011) describe a 
method to determine horizontal and vertical permeability from observation-probe spherical-flow response when flowing 
through a dual-packer tool. 

For the case of finite bed thickness, the resulting radial (or pseudoradial) flow response at the observation probe has 
received less attention. However, field tests show that observation-probe data often do not exhibit a spherical-flow regime in 
thinly laminated formations, but instead show only a radial-flow regime. 

This paper provides a new infinite-acting radial-flow analysis method to determine the horizontal and vertical permeability 
from the radial-flow response at an observation probe of an IPTT. The method applies for tests conducted with a single-probe 
tool (Fig. 1) ora dual-packer tool (Figs. 2 and 3). It is based on an adaptation of a well-testing method presented by Prats 
(1970) for vertical wells with 2D permeability anisotropy. We have extended the method to the general case of an inclined 
wellbore in a reservoir with 3D permeability anisotropy by applying Besson (1990) transformationsto the Prats’ equation for 
the isotropic system. This resulted in new infinite-acting radial-flow equations that apply for all inclination angles of the 
wellbore in a single-layer, 3D anisotropic, homogeneous porous medium. The equations for 2D anisotropic cases are also 
presented and are derived from the general equations given for the 3D anisotropic case. The wellbore inclination can range 
from 0 (vertical) to 90° (horizontal). Furthermore, Prats developed his method for the case of producing (injecting) the well at 
a constant flow rate. However, in practice, it can be difficult to maintain a constant rate; thus, we have adapted the method for 
the case where the production period is followed by a buildup test. 

In the wireline formation-testing (WFT) literature, to the best of our knowledge, such an analysis method and equations 
have not been presented. Therefore, the new analysis procedure and the new equations presented in this paper should be useful 
for estimating horizontal and vertical permeability from WFT observation-probe pressure data exhibiting a radial-flow regime. 

Method of Prats for Vertical Interference Testing 
In the well-testing literature, Prats (1970) described a method for determining vertical permeability in a single-layer system 
with no-flow top and bottom boundaries. He proposed withdrawing or injecting fluid through a single perforation as a way to 
obtain vertical flow in the formation. Furthermore, he proposed using a second perforation, separated from the first by a casing 
packer, to measure the vertical pressure response. Prats modeled the producing perforation as a point source on the surface of a 
well of zero radius. The well completion is illustrated in Fig. 4. Prats studied only the case of a vertical well (θw=0°) with 2D 
permeability anisotropy (i.e., kh≠kv); furthermore, he assumed that the flowing perforation produces at a constant rate of flow. 

Drawdown Test. Prats showed that the late-time (infinite-acting radial flow) pressure response at the observation perforation 
due to constant-rate production from the producing perforation is given by 

btmtpp wf,ooi  log)(, ,  ............................................................................................................................................  (1) 
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Fig. 4—Well completion for a vertical interference test (Earlougher 1977, 1980). 

 
The flow rate, q, is positive for a production period and negative for an injection period. In Eq. 3 G* is the geometrical 
function provided by Prats. G* depends on the position of the production (injection) and measuring perforations with respect 
to the vertical boundaries of the reservoir. G* is given by 
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where Z=ΔZws / h, Z=ΔZwf / h, and 

ZZaZZaZZaZZa  1;1;1;1 4321 .  ............................................................................  (5) 

Thus, G* is a function of only Z and Z, which are the dimensionless positions of the observation and active perforations, 
respectively. G* is a symmetric function—that is, G*(Z, Z ) = G*(Z, Z ). This property is sometimes referred to as the 
“reciprocity principle,” which states that the pressure response between two points is independent of the direction of flow 
between them (McKinley et al. 1968; Carter et al. 1974). The digamma function,  (also referred to as the “psi function”), in 
Eq. 4 can be evaluated using an algorithm by Codyet al. (1973). Fig. 5 presents a graph of G* as a function of∆Zws / h and 
∆Zwf / h. 

For a constant-rate test at the producing perforation, Eq. 1 indicates that a semilog plot of pressure at the observation 
perforation vs. time, pwf,o vs. log t, yields a straight line with slope –m and intercept pwf,o (t =1). From these straight-line 
parameters we can compute 
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Buildup Test. Prats developed his method for the case of producing (injecting) the well at a constant flow rate. However, in 
practice, it can be difficult to maintain a constant rate; thus, an alternate method of testing is to follow the production period 
with a buildup test. For a buildup test (i.e., the well is shut in and flow rate q=0) following a constant-rate test, the late-time 
(infinite-acting radial flow) pressure response at the observation perforation can be computed from the superposition of two 
constant-rate drawdown solutions: 
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Another useful form of the superposition equation is obtained by subtracting the drawdown solution evaluated at time t = tp 
from the buildup pressure response: 
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Eq. 9 indicates that a semilog plot of buildup pressure at the observation perforation vs. Horner time, pws,o vs. log 
[( t p+t ) /t ], yields a straight line with slope –m and intercept pi,o. We can then compute kh from the slope using Eq. 6. We 
can evaluate Eq. 10 at any desired value of t, and then solve for kv. A convenient choice is t =1 hour, and the result is 
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In Eq. 12, pws,o(t =1) must be evaluated from the straight line. 
For test conditions that are more complex than a constant flow rate, or constant flow rate followed by a buildup, the 

superposition method as demonstrated here can be extended to account for any flow rate condition. To eliminate variable-rate 
effects even more rigorously, we can use recently proposed pressure/rate deconvolution methods to convert the observation-
probe data to equivalent constant-rate data (von Schroeteret al. 2004; Onur et al. 2008; Pimonovet al. 2010). 

 

 
Fig.5—Geometrical function computed with Eq. 4. 

Discussion and Limitations of Prats’ Method. In the context of a well-testing method, Prats (1970) noted several 
requirements for the test: 

1. The well must have casing and must be cemented behind the casing. 
2. There must be no communication through the cement behind the casing. [Earlougher (1980) states that a microannulus 

only 0.001-in. wide can give enough vertical flow between the producing and observation perforations to cause the 
appearance of a high vertical permeability.] 

3. The producing and observation locations must not be in communication through the wellbore (which means they must 
be separated by a casing packer or plug). 

4. The test must be conducted long enough to achieve radial flow; the pressure response at the observation location must 
be large enough to be measured during the test duration. 

5. Although the method is derived for single perforations at the producing and observation locations, finite-length 
intervals may be used. In such cases, the producing and observation intervals must be short compared with the distance 
between them, probably 10% or less. 

6. The analysis method is based on the assumption of a zero-radius (i.e., line-source) well. For the method to apply to a 
finite-radius wellbore, 

hvwR kkrZ /25 .  ......................................................................................................................................  (13) 
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Earlougher (1980) states that simulations show that the constant in the right-hand side of Eq. 13 can be relaxed to about 12 
instead of 25 (although he erroneously omits the square root sign). Furthermore, as noted previously, Prats studied only the 
case of a vertical well (θw=0°) with the flowing perforation producing at a constant rate of flow. 

Adaptation of Prats’ Method to Wireline Formation Testing 
Although Prats’ method was developed for well-testing applications, an IPTT as illustrated in Figs. 1–3 typically meets most 
of the requirements of the method. An IPTT is usually conducted in open hole; thus, the requirements for casing and good 
cement are replaced by a requirement for a sealing mudcake. For a dual-packer IPTT test, there may be an issue with the 
length of the flowing interval exceeding 10% of the distance between the packer and observation probe. For both a probe test 
and a dual-packer test, there may be an issue with the requirement of Eq. 13. 

To evaluate Prats’ method for analysis of pressure data acquired at an IPTT observation probe, a number of synthetic cases 
have been analyzed; we present four cases here. All synthetic cases have been generated with the analytical solutions of 
Kuchuk (1996) for a single-probe tool (Fig. 1) and Kuchuk (1994) for the dual-packer tool (Fig.2) for a vertical well.The 
correspondence between Prats’ terminology and the WFTs of Figs. 1 and 2 is ΔZwf = zw, ΔZws = zw + zo, and ΔZR = zo. 

Case 1. Single-Probe Tool, with kh > kv. The input data used to generate this case are h = 20 ft, kh = 100 md, kv = 10 md, 
zw = 8 ft, zo = 2.3 ft, μ = 0.5 cp,  = 0.2, ct = 8×10–6 1/psi, pi,o = 5000 psi, rp = 0.22 in, and rw = 0.25 ft. The test sequence 

comprised a 2-hr flow at 14 bbl/d followed by a 2-hr buildup. For this case ZR = 2.3 ft and hvw kkr /25 = 1.98 ft, so the 

requirement of Eq. 13 is met. The pressure derivative and Horner plots for the buildup are presented in Figs. 6 and 7. The sink 
response in Fig. 6 has been included for reference only. The system reaches radial flow after 0.02 hours of buildup. Values for 
kh and kv are computed from the Horner straight line and they are shown in Fig. 7; kh matches the input, whereas there is a 
slight error of 2.2% in the computed value of kv. 

 
Fig.6—Pressure change and derivative for buildup, Case 1 (flowing through a single probe). 

 
Fig.7—Horner analysis for buildup, Case 1 (flowing through a single probe). 

Case 2. Dual-Packer Tool, with kh > kv. This case was generated using the same input as Case 1, except that the flowing 
probe was replaced by a dual packerwithlw = 1.6 ft and the observation probe was placed at zo = 6.2 ft. For this case ZR = 6.2 ft 

0.01

0.1

1

10

100

1000

10000

1E-05 0.0001 0.001 0.01 0.1 1 10

D
el

ta
 P

 &
 D

er
iv

at
iv

e 
(p

si
)

Delta T (hr)

Delta P, Sink

Derivative, Sink

Delta P, Observ.

Derivative, Observ.

4997

4998

4999

5000

0 1 2 3 4 5

O
b

se
rv

at
io

n
 P

ro
b

e 
P

re
ss

u
re

 (
p

si
)

Log [(tp + ∆t)/∆t]

Inf inite-Acting Radial 
Flow Analysis for 

Observation Probe

khh/μ = 4000.9 md.f t/cp

kh = 100.02 md

kv = 9.78 md



6  SPE 164797 

and hvw kkr /25 = 1.98 ft, so the requirement of Eq. 13 is met. However, the length of the flowing interval is 2 lw = 3.2 ft, 

which does not meet the requirement of being less than 0.62 ft (10% of ZR ). The flowing-interval length exceeds 50% of ZR. 
The pressure derivative and Horner plots for the buildup are presented in Figs. 8 and 9. The dual-packer response in Fig. 8 has 
been included for reference only. The system reaches radial flow after 0.03 hours. The kh and kv values are computed from the 
Horner straight line and they are displayed in Fig. 9; kh matches the input, whereas kv is in error by 8.4%. This error is caused 
by the length of the flowing interval greatly exceeding the limit proposed by Prats of 10% of ZR. Nevertheless, an error of 
8.4% in the computed kv is considered acceptable for practical purposes. 

Case 3. Single-Probe Tool, with kh < kv. This case was generated using the same input as Case 1, except the permeabilities 

were changed to kh = 25 md and kv = 50 md. For this case ZR = 2.3 ft and hvw kkr /25 = 8.84 ft, so the requirement of Eq. 13 

is not met; even relaxing the 25 to 12 as proposed by Earlougher (1980) still fails Eq. 13 by a wide margin. The pressure 
derivative and Horner plots for the buildup are presented in Figs. 10 and 11. The system reaches radial flow after 0.005 hours. 
The kh and kv values are computed from the Horner straight line and they are shown in Fig. 11; kh  matches the input, whereas 
kv is in error by 31%. This error is caused by failure to meet Prats’ requirement of Eq. 13—with kh < kv by a large amount, 
there is not enough separation between the probes when zo = 2.3 ft. 

 
Fig.8—Pressure change and derivative for buildup, Case 2 (flowing through a dual packer). 

 
Fig.9—Horner analysis for buildup, Case 2 (flowing through a dual packer). 
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Fig.10—Pressure change and derivative for buildup, Case 3 (flowing through a single probe; zo = 2.3 ft). 

 
Fig.11—Horner analysis for buildup, Case 3 (flowing through a single probe; zo = 2.3 ft). 

To further examine this point, Case 3 was run again with zo = ZR = 7.9 ft. Such a value is representative of the probe 
spacing for a test conducted with two single-probe tools, as opposed to a dual-probe/single-probe combination, which is the 
basis for zo = 2.3 ft. With zo = 7.9 ft, the requirement of Eq. 13 is almost met (and it is easily met if 25 is relaxed to 12 as 
proposed by Earlougher). The derivative and Horner plots are shown in Figs. 12 and 13; Horner analysis now yields 
kv = 49.5 md, which is just 1% in error. 

 
Fig.12—Pressure change and derivative for buildup, Case 3 (flowing through a single probe; zo = 7.9 ft). 
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Fig.13—Horner analysis for buildup, Case 3 (flowing through a single probe; zo = 7.9 ft). 

Case 4. Dual-Packer Tool, with kh < kv. Case 4 was generated with the same input as Case 3, except that the flowing probe 
was replaced by a dual packer withlw = 1.6 ft and the observation probe was placed at zo = 6.2 ft. For this case ZR = 6.2 ft and 

hvw kkr /25 = 8.84 ft, so the requirement of Eq. 13 is not quite met (although it is met if 25 is relaxed to 12 as proposed by 

Earlougher, 1980). However, the length of the flowing interval is 3.2 ft, which does not meet the requirement of being less 
than 0.62 ft (10% of ZR ). The flowing-interval length exceeds 50% of ZR. The pressure derivative and Horner plots for the 
buildup are displayed in Figs. 14 and 15. The system reaches radial flow after 0.005 hours. Horner analysis results for kh and kv 
are shown in Fig. 15. The kh value matches the input; however, kv is in error by 8.2%. The magnitude of the error is similar to 
that seen in Case 2, suggesting that it is caused by the length of the flowing interval greatly exceeding the limit proposed by 
Prats. It does not appear as if the slight error in meeting the requirement of Eq. 13 has had an effect on the error in kv. 

 
Fig.14—Pressure change and derivative for buildup, Case 4 (flowing through a dual packer). 
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Fig.15—Horner analysis for buildup, Case 4 (flowing through a dual packer). 

Extension of Prats’ Method to Inclined Wellbores and 3D Permeability Anisotropy 
Prats developed his method for vertical wells with 2D permeability anisotropy. Here we extend the method to the general case 
of an inclined wellbore in a reservoir with 3D permeability anisotropy. The wellbore inclination, θw, (see Fig. 3) can range 
from 0 (vertical) to 90 (horizontal). As detailed in Appendix B, we can use the transformations, based on the work of Besson 
(1990), to adapt Eq. 1 for wellbore inclination and 3D anisotropy. The adapted equations for all inclination angles of the 
wellbore and 3D anisotropic medium are given in Appendix B. 

To evaluate our extension of Prats’ method to inclined wellbores, here for simplicity, we consider only the case of a 2D 
anisotropic medium and check the validity of Eqs. 1, 2, and B-15–B-17 by using the analytical solution of Abbaszadeh and 
Hegeman (1990). We compare the intercept of the radial-flow plot, b, given by Eqs. B-15–B-17 with that from radial-flow 
analysis of data from the Abbaszadeh and Hegeman solution. For a 2D anisotropic medium, η=1; therefore Eq. B-15 can be 
written as 
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The restriction on zo given by Eq. B-21 for a 2D anisotropic medium can be written as 
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Eqs. 14 and 15 apply for all values of well inclination, 0°  θw  90° for a 2D anisotropic medium. 
Table 1 compares the values of b computed from Eq. 14 and from the Abbaszadeh and Hegeman solution for a case where 

the anisotropy ratio kv /kh = 0.1, as a function of the inclination angle of the well for a case of constant-rate flow at 14 bbl/d. 
The test duration was long enough so that the observation-probe pressure exhibited a well-defined radial-flow regime. Table 1 
also presents the values of the zo  requirement computed from the right-hand side of Eq. 15. Other input parameter values were 
taken from Case 2 presented previously: h = 20 ft, kh = 100 md, kv = 10 md, zw = 8 ft, zo = 6.2 ft, μ = 0.5 cp,  = 0.2, ct = 8×10–

61/psi,  pi,o = 5000 psi, lw = 1.6 ft, and rw = 0.25 ft.As is seen from Table 1, the error in the value of b from Eq. 14 for this value 
of anisotropy ratio for all inclination angles is less than 2% when compared with the corresponding value obtained from the 
Abbaszadeh and Hegeman solution. We note that zo = 6.2 ft for this case, so only inclination angles less than 80 of Table 1 
meet the requirement given by Eq. 15; however, the error in b is largely unaffected by this. 
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TABLE 1—COMPARISON OF b FROM EQ. 14 AND FROM ABBASZADEH AND HEGEMAN (1990) 
ANALYTICAL SOLUTION FOR AN INCLINED WELL WITH 2D PERMEABILITY ANISOTROPY 

(kv /kh =0.1). 

Inclination angle θw , 
degrees 

b, psi 
Eq. 14 

b, psi 
Abbaszadeh and 

Hegeman 

% error in b from 
Eq. 14 

zo requirement, ft 
Eq. 15 

0 (vertical) 1.475 1.494 1.31 1.98 

15 1.498 1.518 1.29 2.07 

30 1.578 1.598 1.27 2.40 

45 1.743 1.766 1.30 3.13 

65 2.228 2.261 1.48 5.73 

80 2.905 2.954 1.66 10.54 

90 (horizontal) 3.191 3.251 1.84 13.01 

Table 2 presents a comparison for the case of anisotropy ratio kv/kh = 2.0. Like the previous case, we consider a drawdown 
test of constant-rate flow at 14 bbl/d for sufficiently long duration so that the observation-probe pressure exhibited a well-
defined radial-flow regime. Table 2 also presents the values of the zo  requirement computed from the right-hand side of Eq. 
15. Other input parameter values were taken from Case 4 presented previously: h = 20 ft, kh = 25 md, kv = 50 md, zw = 8 ft, 
zo = 6.2 ft, μ = 0.5 cp,  = 0.2, ct = 8×10–61/psi, pi,o = 5000 psi, lw = 1.6 ft, and rw = 0.25 ft.As is seen from Table 2, the error in 
the value of b from Eq. 14 for this value of anisotropy ratio for all inclination angles is less than 5% when compared with the 
corresponding value obtained from the Abbaszadeh and Hegeman solution. We note that zo = 6.2 ft for this case, so inclination 
angles greater than 45 of Table 2 meet the requirement given by Eq. 15; however, like in the previous case, the error in b is 
largely unaffected by this.Thus, from the results of Tables 1 and 2, we conclude that Eq. 14 provides a good approximation for 
the radial-flow plot intercept and hence for the vertical permeability to be computed from this intercept. 

TABLE 2—COMPARISON OF b FROM EQ. 14 AND FROM ABBASZADEH AND HEGEMAN (1990) 
ANALYTICAL SOLUTION FOR AN INCLINED WELL WITH 2D PERMEABILITY ANISOTROPY 

(kv /kh =2.0). 

Inclination angle θw , 
degrees 

b, psi 
Eq. 14 

b, psi 
Abbaszadeh and 

Hegeman 

% error in b from 
Eq. 14 

zo requirement, ft 
Eq. 15 

0 (vertical) 7.490 7.568 1.03 8.84 

15 7.395 7.431 0.48 8.42 

30 7.181 7.133 0.67 7.49 

45 6.964 6.810 2.26 6.55 

65 6.767 6.496 4.17 5.70 

80 6.699 6.392 4.80 5.39 

90 (horizontal) 6.686 6.398 4.50 5.33 

Analysis Procedure for Inclined Wellbores and 3DPermeability Anisotropy 
As mentioned previously, Prats’ method as described by Eqs. 1–5 is valid for a vertical well in a 2D anisotropic medium. As 
we have shown in Appendix B, for inclined wells and 3D anisotropy, Eqs. 1, 2, and B-15–B-17 apply. Also, we have shown 
that for a vertical well in a 3D anisotropic medium, δ=1 and thus Eqs. B-15–B-17 are identical to Eqs. 3–5; therefore, Prats’ 
method applies for all vertical wells, regardless of the degree of anisotropy. 

For inclined wells, application of Prats’ method of Eqs. 1–5 will result in significant error in the analysis. To demonstrate 
this, the Abbaszadeh and Hegeman solution data from the example of Table 1 have been analyzed assuming the well to be 
vertical. The results show that for all cases kh is correctly determined to be 100 md. Table 3 lists the computed kv values; the 
correct value of kv is 10 md. Note that the error of 8.4% at 0 inclination is the inherent error in Prats’ method as shown earlier 
for Case 2. In summary, these results indicate that Prats’vertical-well method can be applied for wellbore inclinations up to 
about 15 without introducing significant error; however, for larger inclinations, the error in kv becomes unacceptable. 

For inclined wells, the intercept b given by Eq. B-15 is a nonlinear function of kv, kh, θw, and η for the case of 3D 
anisotropy. For a 2D anisotropic medium, η=1; thus the intercept b is a nonlinear function of kv, kh, and θw, as given by Eq. 14. 
For a test conducted in an inclined well, radial-flow analysis will provide values for kh and b. Therefore, to obtain a value for 
kv, a nonlinear solution technique must be used. In addition, values for θw and η (if 3D) must be knowna priori. The inclination 
and azimuth angles of the well (θw and θ, respectively) are usually known from a drilling survey. For the case of 3D 
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anisotropy, an estimate for kx/ky can usually be obtained from core data or geologic modeling; values for kx/ky and θ are 
required to estimate η. 

 

TABLE 3—COMPUTED kv (ASSUMING A VERTICAL WELL) FOR AN  
INCLINED WELL WITH 2D PERMEABILITY ANISOTROPY (kv /kh =0.1) 

Inclination angle θw , 
degrees 

kv , md % error in kv 

0 (vertical) 10.84 8.4 

15 11.93 19.3 

30 16.5 65 

45 32.6 226 

65 242 2,320 

80 3,980 39,700 

90 (horizontal) 13,270 132,600 

 
To further illustrate the analysis procedure for determining kv for an inclined well, we consider the case of 2D anisotropy. 

We are required to find a value of kv that satisfies Eq. 14 for the values of for kh and b from radial-flow analysis, and the given 
values of well and reservoir parameters such as θw, h, μ, zo, zw, q, , rw, and ct. This requirement can be expressed as 
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Note that *
~
G is also a function of kv. Eq. 16 is a nonlinear function of kv. The Newton-Raphson method (Press et al. 2007) is 

suitable for solving this nonlinear equation for kv. This method requires the derivative of the function, which requires the 

derivative of *
~
G ; this in turn requires the derivative of the digamma function, . Amos (1983) presents an algorithm for this 

derivative. 
An alternative to a nonlinear solution technique is a graphical technique. This involves plotting f (kv) vs. kv, and visually 

finding the zero point. As an example, the data used to generate Table 1 have been used with Eq. 16 to compute f (kv) vs. kv, for 
the case of θw=45, and the result is displayed in Fig. 16. It can be seen from the figure that  f (kv)=0 at kv=10 md, which is the 
correct solution. 

 
Fig. 16—f (kv) vs. kv for θw =45. 

Field Example Application 
This example is for an IPTT conducted in a vertical well. The tool used was a dual-packer module with a vertical observation 
probe mounted 6.4 ft above the packer in an 11-ft-thick water zone (Fig. 17). The other pertinent parameters are zw = 2 ft, 
lw = 1.6 ft, zo = 6.4 ft, ct = 810–61/psi, rw = 0.354 ft, Cw = 2.0×10–6bbl/psi, µ = 1 cp, and  = 0.22. The test consisted of a 0.5-hr 
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pumpout period, during which about 34 L of water was produced, followed by 1-hr buildup. The average flow rate before 
buildup is 10 bbl/d. 

 
Fig. 17—Schematic diagram of the tool configuration for the field IPTT test. 

The buildup pressure derivative for the packer and probe are shown in Fig. 18; these data identify the flow regimes that 
occurred during the test.The derivative data at both locations show that radial flow is established at about 0.15 hours. In the 
time interval from 0.014 to 0.1hours the dual-packer derivative shows a well-defined –1/2 slope line, indicating either 
spherical or hemispherical flow. For the given values of h, zw, and lw, the dual-packer interval is so close to the bottom of the 
zone that we would expect the response to go almost immediately to hemispherical flow, without any discernible transition 
from spherical to hemispherical. So, the –1/2 slope observed in packer-derivative should be that of the hemispherical flow. 
Overall the derivative signature is typical of a single-layer formation with sealed top and bottom boundaries, and this is 
consistent with geological and log data. 
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Fig. 18—Buildup pressure change and derivative at the packer interval and observation probe, field example. 

Fig. 19 presents the radial-flow analysis for the observation probe. The kh value of 2.82 md is computed from the straight-
line slope; the kv value of 2.52 md is computed with Prats’ method. For this case zo = 6.4 ft; this value does not exceed 

hvw kkr /25 = 8.3 ft, so the requirement of Prats is not met. Note that if we replace the constant 25 by 12 as suggested by 

Earlougher (1980), then the requirement is met. The length of the flowing interval is 2 lw = 3.2 ft, which does not meet the 
requirement of being less than 0.64 ft (10% of zo ). However, in the synthetic examples that were examined, this never 
introduced appreciable error. From the radial-flow analysis a value of spherical permeability can be estimated as 
ks = (kh

2 kv)
1/3 = (2.8222.52)1/3 = 2.72 md. The observation probe does not exhibit spherical flow for this test; therefore, we 
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cannot perform the spherical-flow analysis method of Onur et al. (2011) to estimate the individual values of kh and kv as well 
as the spherical permeability ks, and check this value with that computed from the radial-flow analysis. However, the dual-
packer data exhibit a well-defined hemispherical flow in the time interval from 0.014 to 0.1 hours, so we can perform a 
hemispherical-flow analysis of the dual-packer data. This analysis yields ks = 2.47 md (Fig. 20), which is in good agreement 
with the 2.72-md value estimated from radial-flow analysis of the observation-probe data. 
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Fig. 19—Radial-flow analysis for buildup at the observation probe, field example. 
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Fig.20—Hemispherical-flow analysis for buildup at the dual packer, field example. 

Fig. 21 presents model-generated pressure change and derivative for the observation probe using the radial-flow results of 
kh = 2.82 md and kv = 2.52 md. Figs. 22and 23 display the simulated observation-probe and dual-packer pressures over the 
entire test interval, respectively. To generate the simulated responses shown in Fig. 22, we used a mechanical skin factor of 
S = 0.41, which was estimated from nonlinear regression analysis by Onur et al. (2004). The matches shown in Figs. 21–23 are 
good. These kh and kv values are also quite close to those determinedby Onur et al. (2004); they used nonlinear regression 
analysis based on pressure-pressure convolution to obtain kh = 2.81 md, kv = 2.58 md, and S = 0.41. In summary, application of 
Prats’ method to the observation-probe buildup data of this vertical-well IPTT provides values of horizontal and vertical 
permeability. These values provide good matches of the observation-probe pressures and the dual-packer pressures. 
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Fig.21—Model pressure change and derivative for observation-probe buildup using results from radial-flow analysis. 
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Fig.22—Simulated pressure for observation probe using kh =2.82 md and kv =2.52 md from radial-flow analysis. 
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Fig.23—Simulated pressure for dual packerusing kh =2.82 md and kv =2.52 md from radial-flow analysis. 

Conclusions 
We have presented a method to determine the horizontal and vertical permeability from the radial-flow response at an 
observation probe of an IPTT. The method applies for tests conducted with a single-probe or dual-packer module. The method 
is based on an adaptation of a well-testing method presented by Prats (1970) for vertical wells with 2D permeability 
anisotropy. We have extended the method to the general case of an inclined wellbore in a reservoir with 3D permeability 
anisotropy. The wellbore inclination can range from 0 (vertical) to 90 (horizontal). Furthermore, Prats developed his method 
for the case of producing (injecting) the well at a constant flow rate. However, in practice, it can be difficult to maintain a 
constant rate; thus, we have adapted the method for the case where the production period is followed by a buildup test. 

We have used our extension of Prats’ method to analyze pressure data acquired at an IPTT observation probe; synthetic 
cases and a field dual-packer IPTT test have been evaluated. The analysis results for the synthetic cases are generally in good 
agreement with the input values. For the field test, the value of kv obtained from our radial-flow analysis agrees well with 
resultsobtained from spherical-flow analysis and nonlinear regression analysis. In cases where Prats’ requirements are 
violated, error is seen in the kv result; kh is always determined without error. For IPTT tests conducted where kv exceeds kh by a 
factor of two or more, the observation-probe spacing may be designed so that analysis requirements are not violated. For dual-
packer IPTT tests where analysis requirements on the length of the flowing interval are exceeded by a large margin, the 
synthetic cases and the field test show that the error in kv remains less than 10%, which is acceptable. 

Nomenclature 
 a1 – a4= constants used in the digamma function 
 ax = constant defined by Eq. B-10, dimensionless 
 ay = constant defined by Eq. B-11, dimensionless 
 az = constant defined by Eq. B-12, dimensionless 
 b = intercept of radial-flow plot, m/Lt2, psi 
 ct = total compressibility, Lt2/m, 1/psi 
 Cw= wellbore or tool storage constant at the dual-packer location, L4t2/m, bbl/psi 
 f  = nonlinear function defined by Eq. 16 
 G* = geometrical function, dimensionless 
 h = formation thickness, L, ft 
 kh= horizontal permeability, L2, md 
 ks = spherical permeability, L2, md 
 kv= vertical permeability,L2, md 
 kx= horizontal permeability in x-direction of a 3D anisotropic formation,L2, md 
 ky= horizontal permeability in y-direction of a 3D anisotropic formation,L2, md 
 kz = vertical permeability (in z-direction) of a 3D anisotropic formation,L2, md 
 lw = half-length of the open interval, L, ft 
 log = logarithm based 10 
 m = slope of radial-flow plot (absolute value), m/Lt2, psi 
 msp = slope of straight line on a spherical-flow plot,m/Lt3/2, psi-hour1/2 
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 pi,o = initial formation pressure at the observation point, m/Lt2, psi 
 pwf,o = flowing pressure at the observation point, m/Lt2, psi 
 pws,o = buildup pressure at the observation point, m/Lt2, psi 
 q = flow rate, L3/t, bbl/d 
 rp = probe radius, L, inches 
 rw = wellbore radius, L, ft 
 S = mechanical skin factor, dimensionless 
 t = time, t, hour 
 tp = producing time, t, hour 
 x = x coordinate in Cartesian coordinate system, L, ft 
 y = y coordinate in Cartesian coordinate system, L, ft 
 z = z coordinate in Cartesian and cylindrical coordinate systems, L, ft 
 Z = location of observation perforation, dimensionless 
 Z  = location of producing perforation, dimensionless 
 zo = measured distance from the center of the producing probe/packer to observation probe, L, ft 
 zw = vertical distance from the bottom of the formation to the center of the producing probe/packer, L, ft 
  = constant defined by Eq. 8, dimensionless 
  = constant defined by Eq. 12, dimensionless 
  = constant defined by Eq. B-14, dimensionless 
  = Euler’s constant, equal to 0.57721. . . 
 t = elapsed (or shut-in) time during buildup, t, hour 
 ΔZP = distance from the producing perforation to the top of the formation, L, ft 
 ΔZR = distance from the observation perforation to the producing perforation, L, ft 
 ΔZwf  = distance from the bottom of the formation to the producing perforation, L, ft 
 ΔZws = distance from the bottom of the formation to the observation perforation, L, ft 
  = constant defined by Eq. B-13, dimensionless 
 ' = azimuth angle of the well from x-axis, degrees 
 w = inclination angle of well, degrees [0 (vertical) to 90 (horizontal)] 
 µ = viscosity, m/Lt, cp 
  = porosity, fraction 
  = digamma function (i.e., logarithmic derivative of the gamma function) 

Subscripts 
 h = horizontal 
 i = initial or index 
 o = observation probe 
 p = coordinate of probe 
 t = total 
 v= vertical 
 w = well or wellbore 
 x= x-direction 
 y = y-direction 
 z = z-direction 

Superscripts 

   = effective properties in an equivalent isotropic medium 
 ~= effective property in a 3D anisotropic medium 
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Appendix A—Terminology 
The terms “horizontal permeability” and “vertical permeability” are commonly used to refer to permeability values parallel to 
the formation bed boundaries and perpendicular to the formation bed boundaries, respectively. However, if the formation bed 
boundaries are not actually horizontal, then horizontal permeability and vertical permeability will not actually be horizontal 
and vertical, respectively. Nevertheless, the terms horizontal permeability and vertical permeability are used to refer to 
permeability parallel to the bed boundaries and perpendicular to the bed boundaries, respectively, throughout this paper. In a 
similar manner as “horizontal” and “vertical” permeability, a “vertical well” is considered to be a wellbore drilled 
perpendicular to the formation bed boundaries, whereas a “horizontal well” is considered to be a wellbore drilled parallel to 
the formation bed boundaries. Thus, if the formation bed boundaries are not actually horizontal, then a vertical well and a 
horizontal well will not actually be vertical and horizontal, respectively. 

The term “anisotropy” refers to the variation of a property with the direction in which it is measured. Rock permeability is 
a measure of its conductivity to fluid flow through its pore spaces. Reservoir rocks often exhibit permeability anisotropy—
conductivity to fluid depends on the direction of flow. This is most often true when comparing permeability measured parallel 
to bed boundaries (“horizontal permeability,” kh) and permeability measured perpendicular to bed boundaries (“vertical 
permeability,” kv). Such permeability anisotropy is referred to as 2D anisotropy. In some cases, there may even be anisotropy 
within the plane parallel to bed boundaries, such that instead of a single value of horizontal permeability (kh), there are 
separate components measured in orthogonal directions, referred to as kx and ky. A rock that exhibits variation in permeability 
when measured vertically as well as both horizontal directions is said to have 3D anisotropy. A rock that exhibits no 
directional variation in permeability is referred to as “isotropic.” 

Appendix B—Derivation of Radial-Flow Equation for an Observation Probe for Inclined Wellbores and 3D 
Permeability Anisotropy 
Here, we extend the Prats’ (1970) method to the general case by deriving radial-flow equation for an observation probe 
positioned along an inclined wellbore in a reservoir with 3D permeability anisotropy. The wellbore inclination, θw, can range 
from 0 (vertical) to 90 (horizontal). Our starting point is the infinite-acting radial-flow equation for the observation probe in 
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an isotropic medium (i.e.,kh = kv = k) of finite thickness h. This equation (for a constant-rate drawdown test) is given by Eq. 1 
where kh and kv are replaced by k. Then, the following transformations, based on the work of Besson (1990), can be used to 

adapt Eq. 1 with vh kkk   for an equivalent isotropic system for wellbore inclination and 3D anisotropy: 

3 2
vhs kkkk  , ..........................................................................................................................................................  (B-1) 

xax x , ........................................................................................................................................................................  (B-2) 

yay y , .......................................................................................................................................................................  (B-3) 

zaz z , ........................................................................................................................................................................  (B-4) 

hah z , ........................................................................................................................................................................  (B-5) 

wzw lal δ , ..................................................................................................................................................................  (B-6) 

ozo zaz δ , ..................................................................................................................................................................  (B-7) 

θtan/θtan  yx kk , .................................................................................................................................................  (B-8) 

and 

ww θtan)δ/η(θtan  . ..................................................................................................................................................  (B-9) 

The parameters ax, ay, az, η, and δ in Eqs. B-1–B-8 are defined as, respectively, 

46 // xyhvx kkkka  , ..............................................................................................................................................  (B-10) 

46 // yxhvy kkkka  , ..............................................................................................................................................  (B-11) 

3 / vhz kka  ,..............................................................................................................................................................  (B-12) 

θsin/θcos/η 22  yxxy kkkk , ..................................................................................................................  (B-13) 

and 

whvw kk θsinη)/(θcosδ 222  . ........................................................................................................................  (B-14) 

In Eqs. B-1–B-14, kh represents the geometric permeability on the horizontal plane, i.e., kh = yx kk , and kv (=kz) represents 

the vertical permeability.Also, we use the terminology of Figs. 1–3: zw=ΔZwf  and zo =ΔZR. 
Using Eq. B-1 for transforming k, Eq. B-4 for zw, Eq. B-5 for h, and Eq. B-7 for zo, we obtain the radial-flow equation for 

an observation probe in a 3D anisotropic porous medium for all inclination angles of a well. The result is that Eqs. 1 and 2 in 
the main text remain unchanged; however, the intercept of the radial-flow plot, b, becomes 
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G is given by 
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where Z
~

=(zw + δ zo) / h, Z
~ =zw / h, and 
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1~
4321  .  ..................................................................  (B-17) 

Note that for a 2D anisotropic medium, where we assume permeability is isotropic in the horizontal plane (i.e., kx =ky), we 
obtain η=1 from Eq. B-13. 

As noted earlier in the section “Discussion and Limitations of Prats’ Method,” the method is based on the assumption of a 
zero-radius (i.e., line-source) wellbore. For Eqs. 1–5 to apply to a finite-radius wellbore in an isotropic medium (i.e., kh =kv), 
Eq. 13 becomes 

wo rz 25 .  ...............................................................................................................................................................  (B-18) 

Therefore, for Eqs. 1, 2, and B-15–B-17 to apply to a finite-radius inclined wellbore in a reservoir with 3D permeability 
anisotropy, Eq. B-18 must be transformed. We use Eq. B-7 to replace zo; rw is replaced by the expression given by Besson 
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(1990): 
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With zo replaced by oz  and rw replaced by wr  in Eq. B-18, the resulting transformation for a 3D anisotropic medium is 
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For a 2D anisotropic medium, kx=ky and η=1; thus Eq. B-20 becomes 
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Next we present the radial-flow equations for a 3D anisotropic medium given by Eqs. 1, 2, and 28–30 for three different 
cases depending on the wellbore inclination: vertical (θw =0°), horizontal (θw=90°), and inclined (0°<θw <90°). 

Vertical Well. For θw =0° we obtain δ=1 from Eq. B-14. Thus, Eqs. B-15–B-17 for this case become identical to Eqs. 3–5 in 
the main text, presented by Prats for the 2D anisotropic case. This result indicates that one can use Prats’ equations and the 
analysis procedure based on a 2D anisotropic case for determining kh and kv for the case of 3D anisotropy. 

Horizontal Well. For θw=90° we obtain δ = η hv kk /  from Eq. B-14. Thus the intercept b given by Eq. B-15 will be a 

nonlinear function of kv, kh, and η for the case of 3D anisotropy. For a 2D anisotropic medium, η=1; thus δ = hv kk / and the 

intercept b given by Eq. B-15 will be a nonlinear function of kv and kh. 

Inclined Well. For 0°<θw<90° the intercept b given by Eq. B-15 will be a nonlinear function of kv, kh, θw, and η for the case 
of 3D anisotropy. For a 2D anisotropic medium, η=1; thus the intercept b given by Eq. B-15 will be a nonlinear function of kv, 
kh, and θw. 


