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Abstract. In this paper, the performance of integrated linear-NN models is investigated for nonlinear 
system identification using two different structures: series vs. parallel. In particular, Laguerre filters are 
selected as the linear models, and multi-layer perceptron (MLP) or feed-forward neural networks (NN) are 
selected for the nonlinear models. Results show promising capability of the (novel) parallel Laguerre-NN 
structure especially in terms of its generalization capability when subjected to data different from those used 
during the identification stage in comparison to the series Laguerre-NN. 
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1. Introduction  
  

In majority of control applications, system identification is an indispensable part for the analysis and 
controller design [1]. This applies for nonlinear systems as well, which has been the primary focus in recent 
years. One of the most frequently studied classes of nonlinear models consist of block-oriented 
representations, where linear dynamic systems and nonlinear static mappings, are represented by separate 
blocks connected in series [2].  

Wiener model structure is one of the most commonly used block-oriented (BO) models and various 
applications in industrial nonlinear systems, such as distillation columns and pH processes have been 
reported [3-5]. Wiener models consist of a dynamic linear part cascaded with a static nonlinear component as 
shown in Figure 1. Common model classes for the dynamic linear subsystem are FIR filters, input/output 
models, state space models, and Orthonormal Basis Filters (OBF), e.g. Laguerre or Kautz filters. The 
memoryless requirement for the nonlinear subsystem allows almost unlimited choices for the nonlinear 
element, and recently the use of Neural Networks (NN) as the static nonlinear component has been 
investigated by various authors [3, 5]. In [3] especially, the separate blocks are represented by Laguerre 
filters and multi-layer perceptron (MLP) NN in series, respectively, and the models are solved sequentially. 
The Laguerre parameter 'p' is chosen based on the step response of the process at its nominal operating point, 
as 'p' dictates the dominant pole(s) of the process. After fixing a proper value of 'p' the network is then 
trained.   

 

 
Figure 1. The block diagram of the Wiener model. 

 
In contrast to the serial structure as discussed in [3], the parallel integration of linear-NN models approach 

as suggested in [6] provides an interesting alternative in modeling a nonlinear system (see Figure 2). This 
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approach relies on the fact that a nonlinear model may perform worse than the linear one if it is not chosen 
appropriately. By developing a linear model (obtained by using either input/output data or by first principle 
strategy) in parallel with the nonlinear model, such that the overall model output is determined by the sum of 
the linear and the nonlinear parts, the performance of the overall nonlinear model is then ensured to be either 
equivalent or superior than the linear model. An example of this approach is presented in [7] for a vibration 
system, where a fundamental linear model is used in parallel with NN. 

 

 
Figure 2. The schematic diagram of the parallel linear/nonlinear models [6]. 

 
In this paper, the performances of integrated Laguerre-NN models are investigated for both the series 

and parallel structures. In particular, the parallel structure to be presented in this paper is of novel type, 
which is different from that described in [7]. The series structure is developed based on [3]. The series and 
parallel Laguerre-NN models are investigated especially for its generalization capability in the presence of 
new data. In Section 2, the novel parallel structure is presented. The series structure is explained in detail in 
[3], for brevity purposes, interested readers are referred to the paper. To provide a fair comparison to the 
method in [3], MLP NN is selected. Results and discussions are presented in Section 3. 

2. Novel parallel OBF-NN models 

2.1. The idea 
In prediction methods, the analysis of residuals is often underestimated [8]. There are occasions where 

residuals are not due to randomness and may actually inherit the characteristics of the original system. In this 
paper, the approach constitutes the usage of residuals in a sequential nonlinear identification technique using 
parallel integration of the linear OBF and nonlinear NN models. 

The proposed configuration may be represented using a block diagram as shown in Figure 3. Note that in 
the proposed once-through sequential method, the linear dynamic OBF model is developed first. The input 
sequence to the NN is the original input sequence to the process, u, and the residuals (i.e. 1yye m −= , 
where ym is the actual measured output and y1 is the linear OBF model predicted output) are the output to be 
predicted by the nonlinear NN. Iterations, based on some convergence criteria of standard NN algorithm, are 
performed only in the NN block. The overall predicted output is then the summation of the predicted 
residuals, ê and the OBF output, y1.  
Hence,  
                                                                      eyyi ˆˆ 1 +=                                                                                    (1) 

 

 
Figure 3. The block diagram of the proposed parallel OBF-NN models. 

 
The measurement noise is considered to be acting on the output and is designated by n. The NN used 

throughout this paper is a single hidden layer MLP network. The mathematical descriptions of the methods 
are given below using Laguerre filters to represent the OBF models for ease of discussions. 

2.2. Identification of parallel Laguerre-NN models 
First, a parsimonious linear Laguerre model is identified using methods described in [9]. Given a set of 

nonlinear data to be identified [u(k),ym(k)], a Laguerre model is developed using crude estimate or arbitrarily 
chosen poles. Then, one or two of the dominant poles of the system are estimated using the methods 
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proposed in [9]. The estimated dominant poles are used to develop more accurate Laguerre model. A better 
estimate of the dominant poles is obtained from the new Laguerre model. The process is repeated until a 
convergence criterion is satisfied.  

A SISO linear system modeled by Laguerre filters can generally be represented as follows [3]:  
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 Li(k) denotes the ith order Laguerre filter, N the number of Laguerre filters used for model development, p 

the Laguerre filter parameters (i.e. the dominant poles of the system), Ts the sampling interval, )(1 ky  the 
model output, and u(k) is the process input. Once a satisfactory Laguerre model is obtained, the model output 

1y  is used to calculate the residuals. These residuals are then passed to the MLP NN. Considering a SISO 
example with a single output neuron, the output of an MLP neural network with one hidden layer is given by  
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where )(⋅γ  is the nonlinear neural network function approximation, which is trained with data sets 
consisting of the input or regression vector, u(k) and the residuals, e(k). Also RR →:, βϕ  are the nonlinear 
activation functions (e.g. hyperbolic tangent etc.), b are the biases, K is the number of hidden neurons, and 
the weights of the network are denoted by Kiw ji ,,1,1

, …=  (with ith neuron and jth input, in this case 1=j ) for 

the first layer, and Kiwi ,,1,2 …=  for the second layer. 
Without loss of generality and for ease of discussions, zero noise is assumed, i.e. 0=n , such that if yy ˆˆ = . 

The overall model output then is the summation of both the linear dynamic model and the predicted residuals 
ê. 
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Substituting equations (2) and (4) yields, 
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2.3. Identification algorithm 
The proposed identification algorithm is based on the recently developed identification algorithm for 

parsimonious OBF models by Lemma et al. [9] and the standard back-propagation (BP) algorithm for the 
neural network training. Given a set of nonlinear data to be identified [u(k),ym(k)], the algorithm can be 
described as follows: 

 
1. Develop a parsimonious OBF model using methods described by [9] to get y1. 
2. Calculate the residuals using 1yye m −= . 
3.      Develop the NN model using standard BP algorithm.  
 
The input data to the NN is segregated as training and validation sets (75% for training, and 25% for 

validation) as is normally done with any NN modeling. The optimal NN model is determined by varying the 
activation functions for each layer and the regressors sets. Convergence criteria used is based on Root Mean 
Square Error (RMSE). 
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3. Results and Discussions 
To demonstrate the performance of the series and parallel Laguerre-NN models, Van de Vusse reactor case 

study is considered [10] under medium nonlinearity condition. The nonlinear identification is carried out for 
SISO system by considering the dynamic characteristics from the changes of the feed flow rate, F, and the 
product outlet concentration, CB. In all cases, the number of Laguerre filters is fixed at six (wherever 
applicable), and a single-hidden layer standard MLP network is adopted.  

Figures 3 and 4 show the corresponding performance of the series and parallel methods when subjected to 
extrapolated data up to 30% increase in the feed flow rate, F, beyond the original training range used to 
identify the model. For comparison purposes, the performance of pure NN is also presented.  

In the identification stage (Training set), all models, except for linear OBF, performs comparably similar 
as can be seen from the resulting RMSE values. However, when subjected to data that slowly drifting away 
from the original training set, it can be clearly observed that the novel parallel Laguerre-NN models have 
superior extrapolation performance in comparison to the series Laguerre-NN models as proposed in [3], as 
well as against pure NN. Pure NN behavior is as expected due to its constant extrapolation behavior. Series 
Laguerre-NN structure on the other hand, relies on pure linear behavior when subjected to extrapolation. 
 

 
Figure 3. Root mean squared error (RMSE) for the training set and extrapolated data sets. 

 
 

 
                         (a) Series Laguerre-NN [3]                                                  (b) Parallel Laguerre-NN 
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(c) Pure NN 

Figure 3. Performance comparison for a 22% increased in the inlet flow rate, F, beyond the original training range. 

4. Conclusions 
In this paper, the performance of series and parallel Laguerre-NN models are investigated. Using the 

nonlinear Van de Vusse reactor case study, it is shown that the novel parallel Laguerre-NN structure 
provides promising performance, with better extrapolation or generalization capability than the series 
Laguerre-NN model.  
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