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Abstract 
Accurate prediction of pressure drop in vertical multiphase 
flow is needed for effective design of tubing and optimum 
production strategies.  Several correlations and mechanistic 
models have been developed since 1950.  In addition to the 
limitations on the applicability of all existing correlations, they 
all fails to provide the desired accuracy of pressure drop 
predictions.  The recently developed mechanistic models 
provided little improvements in pressure drop prediction over 
the empirical correlations.  However, there is still a need to 
further improve the accuracy of prediction for a more effective 
and economical design of wells and better optimization of 
production operations. 

This paper presents an Artificial Neural Network (ANN) 
model for prediction of the bottom-hole flowing pressure and 
consequently the pressure drop in vertical multiphase flow.  
The model was developed and tested using field data covering 
a wide range of variables.  A total of 206 field data sets 
collected from Middle East fields; were used to develop the 
ANN model. These data sets were divided into training, cross 
validation and testing sets in the ratio of 3:1:1. The testing 
subset of data, which were not seen by the ANN model during 
the training phase, was used to test the prediction accuracy of 
the model and compare its performance against existing 
correlations and mechanistic models.  The results showed that 
the present model significantly outperforms all existing 
methods and provides predictions with higher accuracy.  This 
was verified in terms of highest correlation coefficient, lowest 
average absolute percent error, lowest standard deviation, 
lowest maximum error, and lowest root mean square error.  A 
trend analysis was also conducted and showed that the present 
model provides the expected effects of the various physical 
parameters on pressure drop. 

 
Introduction 
A reliable and accurate way of predicting pressure drop in 
vertical multiphase flow is essential for the proper design of 
well completions and artificial-lift systems and for 
optimization and accurate forecast of production performance. 
Because of the complexity of multiphase flow, mostly 
empirical or semi-empirical correlations have been developed 
for prediction of pressure drop.  

Numerous correlations have been developed since the 
early 1940s. Most of these correlations were developed under 
laboratory conditions and are, consequently, inaccurate when 
scaled-up to oil field conditions1.  The most commonly used 
correlations are those of (Hagedorn and Brown2; Duns and 
Ros3; Orkiszewski4; Beggs and Brill5; Aziz and Govier6; 
Mukherjee and Brill correlation7). Numerous studies were done 
to evaluate and study the applicability of those correlations 
under different ranges of data8-15.  Most researchers agreed 
upon the fact that no single correlation was found to be 
applicable over all ranges of variables with suitable accuracy1.  
It was found that correlations are basically statistically 
derived, global expressions with limited physical 
considerations, and thus do not render them to a true physical 
optimization. 

Mechanistic models are semi-empirical models used to 
predict multiphase flow characteristics such as liquid hold up, 
mixture density, and flow patterns. Based on sound theoretical 
approach, most of these mechanistic models were generated to 
outperform the existing empirical correlations.  The most 
widely used mechanistic models are those of Hasan and 
Kabir16; Ansari et al17.; Chokshi et al.18; Gomez et al.19. Other 
studies were conducted to evaluate the validity of such 
mechanistic models20-22.  Generally, each of these mechanistic 
models has an outstanding performance in specific flow 
pattern prediction and that is made the adoption for certain 
model of specific flow pattern by investigators to compare and 
yield different, advanced and capable mechanistic models.  

However, a statistical study indicated that there is no 
pronounced advantage for mechanistic models over the current 
empirical correlations in pressure prediction ability when 
fallacious values are excluded1.   

The recent development and success of applying artificial 
neural networks (ANN) to solve various difficult engineering 
problems has drawn the attention to its potential applications 
in the petroleum industry.  The use of artificial intelligence in 
petroleum industry can be tracked back just almost twenty 
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years23.  The use Artificial Neural Network (ANN) in solving 
many petroleum industry problems was reported in the 
literature by several authors.  Recently, ANN has been applied 
in the multiphase flow area and achieved promising results 
compared to the conventional methods (correlations and 
mechanistic models). With regard to this field, a few 
researchers applied ANN technique to resolve some problems 
associated with multiphase problems including pressure 
drop24-25, flow patterns identification26-27, liquid hold up30, and 
gas and liquid superficial velocities28. 

Experience showed that empirical correlations and 
mechanistic models failed to provide a satisfactorily and a 
reliable tool for estimating pressure in multiphase flow wells. 
High errors are usually associated with these models and 
correlations. Artificial neural networks gained wide popularity 
in solving difficult and complex problems, especially in 
petroleum engineering.  

The artificial intelligence (AI) or soft computing shows 
better performance over the conventional solutions. AI’s aim 
can be stated as “the development of paradigms or algorithms 
that require machines to perform tasks that apparently require 
cognition when performed by humans29. Artificial intelligence 
techniques are classified into ANN, genetic algorithms, expert 
systems, and fuzzy logic. ANN is a machine that is designed 
to model the way in which the brain performs a particular task 
or function of interest. The system of ANN has received 
different definitions30.  However, a widely accepted term is 
that adopted by Alexander and Morton31: “A neural network is 
a massively parallel distributed processor that has a natural 
propensity for storing experiential knowledge and making it 
available for use”.  

This paper presents an Artificial Neural Network (ANN) 
model for prediction of the bottom-hole flowing pressure and 
consequently the pressure drop in vertical multiphase flow.  
The model was developed and tested using field data covering 
a wide range of variables.  A total of 206 field data sets 
collected from Middle East fields; were used to develop the 
ANN model. These data sets were divided into training, cross 
validation and testing sets in the ratio of 3:1:1. The testing 
subset of data, which were not seen by the ANN model during 
the training phase, was used to test the prediction accuracy of 
the model and compare its performance against existing 
correlations and mechanistic models. 

 
Model Development 
The developed ANN model utilizes multiple-layer feed 
forward networks, which were selected due to their 
capabilities of representing non-linear functional mappings 
between inputs and outputs.  The developed model consists of 
one input layer (containing nine input neurons or nodes), 
which represent the input parameters (oil rate, water rate, gas 
rate, diameter of the pipe, length of pipe, wellhead pressure, 
oil gravity "API", surface temperature, and bottomhole 
temperature), three hidden layers (the first one contains six 
nodes, the second and third hidden layer each contains three 
nodes) and one output layer (contains one node) which is 
bottomhole pressure. This topology is achieved after a series 
of optimization processes by monitoring the performance of 
the network until the best network structure was accomplished 
(Fig. 1). 

Data Acquisition and Pre-processing  
A total of 386 data sets were collected from different Middle 
East fields. The data used for developing the model covers an 
oil rate from 280 to 19618 BPD, water cut up to 44.8%, and 
gas oil ratios up to 675.5 SCF/STB. To check the validity of 
the collected data and remove the suspected outliers, empirical 
correlations and mechanistic models were used to predict the 
bottomhole flowing pressures and compare it with the 
measured value.  The mechanistic models of Hasan and 
Kabir16, Ansari et al.17, Chokshi et al.18, Gomez et al.19, and 
the correlations of Hagedorn and Brown2, Duns and Ros3, 
Orkiszewski4, Beggs and Brill5, and Mukherjee and Brill7 were 
used.  Data sets which consistently resulted in poor predictions 
by all correlations and mechanistic models were considered to 
be invalid and, therefore, removed. A cut-off-error percentage 
(relative error) of 15% was implemented for the whole data.  
After such a screening, a total 206 data sets were used to 
develop the artificial neural network model.  These were 
randomly divided into three different groups: training, 
validation, and testing. The training set is used to develop and 
adjust the weights in a network; the validation set is used to 
ensure the generalization of the developed network during the 
training phase, and the testing set is used to examine the final 
performance of the network and compare the model 
performance with other correlations and mechanistic models. 
Different partitioning ratios were tested (2:1:1, 3:1:1, and 
4:1:1). The ratio of 4:1:1 (suggested by Haykin30) yielded 
better training and testing results. Table 1 shows the statistical 
analysis of the used data. 
 
Results and Discussion 
To evaluate a newly developed model, two tests must be 
performed.  First, the model must be tested to prove that it is 
stable and simulates the physical process; this is done through 
"trend analysis". Second, the predictive performance of the 
new model must be compared against existing correlations and 
models.  This is done through cross plots and a group error 
analysis, using the average absolute percent error as an 
indicator.. 
 
Trend Analysis 
A trend analysis was carried out to check whether the 
developed model is physically correct or not.  For this 
purpose, synthetic sets were prepared where in each set only 
one input parameter was changed while other parameters were 
kept constant. To test the developed model, the effects of gas 
rate, oil rate, water rate, tubing diameter, and pipe length on 
flowing bottomhole pressure were determined.  Figures 2 and 
3 show the effect of gas rate and tubing diameter on 
bottomhole pressure, respectively.  The developed model 
showed the correct trend where the flowing bottomhole 
pressure decreases as the gas rate and tubing diameter 
increase.  

Some correlations and Gomez model showed a decrease in 
bottomhole pressure followed by an increase when gas rate 
increase. The reason is that when the gas liquid ratio becomes 
very high, additional increase in gas rate results in an increase 
in frictional and acceleration pressure drop which is more than 
the decrease in the hydrostatic head.  Figures 4 through 6 show 
the effect of water rate, oil rate, and depth, respectively.  The 
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figures show that the present model successfully produced the 
expected trends; i.e. the bottomhole pressure is increasing with 
increase in water rate, oil rate, and depth.  

 
Comparison of the ANN Model against Other Models 
As mentioned earlier, 41 data sets were used to evaluate the 
predictive capability of the present artificial neural network 
model and compare its performance against existing 
correlations and mechanistic models.  The prediction 
performances of five correlations that have been used by the 
industry (Hagedorn and Brown2; Duns and Ros3; 
Orkiszewski4; Beggs and Brill5; Mukherjee and Brill7), and 
four mechanistic models (Hasan and Kabir16; Ansari et al17.; 
Chokshi et al.18; Gomez et al.19) were compared against the 
present model. Table 2 lists the important statistical 
parameters (defined in Appendix A) for comparative 
evaluation of the correlations, mechanistic models and the 
present ANN model. 

To demonstrate the robustness of the developed model, the 
group error analysis was conducted. Average absolute percent 
(Ea) relative error is used as a good indicator of the accuracy.  
This effective comparison of all investigated correlations and 
mechanistic models provides a good means of evaluating 
models performance. AAPE is utilized in this analysis by 
grouping input parameter and hence plotting the 
corresponding values of average absolute relative error for 
each set. Figures 7 through 11 present the statistical accuracy 
of flowing bottomhole pressure correlations and models for 
different groups of the studied parameters. These include oil 
rate, gas rate, water rate, tubing diameter and depth, 
respectively.  The figures showed that the present model 
consistently outperformed all correlations and mechanistic 
models and resulted in the lowest average absolute relative 
error in all data ranges of the studied parameters.   

Cross plots were used to compare the performance of the 
developed mode and other correlations and mechanistic 
models. A 45° straight line between the estimated versus 
actual data points is drawn on the cross plot, which denotes a 
perfect correlation line.  The scattered cloud of data points 
indicates bad correlation.  Figures 12 through 21 present cross 
plots of predicted versus measured bottomhole pressure actual 
for the developed model, other empirical correlations and 
mechanistic models.  Investigation of these figures clearly 
shows that the developed ANN model outperforms all 
correlations and mechanistic models. 

Several observations and conclusions can be made by 
investigation of Figures 12 to 21 and Table 2.  Hasan and 
Kabir model produced the largest error in predicting the 
bottomhole flowing pressure (Ea of 9.23% and correlation 
coefficient of 0.7502).  Accuracy of prediction was improved 
for Ansari et al. model (Ea of 6.75% and correlation coefficient 
of 0.8178).  The other two mechanistic models of Chokshi et 
al. and Gomez et al. resulted in a similar performance.  
Surprisingly, the empirical correlations, except for Duns and 
Ros, performed much better than the mechanistic models.  
Finally, Mukherjee and Brill correlations outperformed other 
correlations and mechanistic models (Ea of 4.903% and 
correlation coefficient of 0.8792).   The predicted pressure 
drop by the present ANN model is compared against the 
measured values in Figure 21.  Investigation of the figure 

clearly demonstrates the outstanding performance of the 
present model.  The model predicted the 41 values of 
bottomhole flowing pressure with Ea of 2.165% compared to 
9.23% for Hasan and Kabir.   The correlation coefficient for 
the model is 0.9735 compared to 0.9015 for Orkiszewski, and 
0.8836 for Chokshi model. 
 
 
Conclusions 

1. Artificial Neural Network model based back-
propagation learning algorithm has been used was 
developed to predict the bottomhole flowing pressure 
in vertical wells. 

2. The new model provided exceptionally accurate 
predictions over the best available empirical 
correlations and mechanistic models.  

3. The developed model achieved best correlation 
coefficient (0.9735), the lowest maximum absolute 
relative error (7.1401%), the lowest root mean 
squared error (2.8013), the lowest standard error 
deviation (66.2448), and the lowest average absolute 
percent error (2.1654%). 

4. Trend analysis of the model showed that the model 
correctly predicted the expected effects of the 
independent variables on bottomhole flowing 
pressure.  This indicated that the model simulates the 
actual physical process.  

5. The present study clearly demonstrates the power of 
artificial neural network model in solving 
complicated engineering problems.  The developed 
model could perform even better if more data were 
used for training. 

6. The new developed model can be used only within 
the range of used data. Caution should be taken 
beyond the range of used input variables. 
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APPENDIX 
 
1. Average Percent Relative Error (APE): 
It is the measure of relative deviation from the experimental 
data, defined by: 
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 the actual value of bottomhole pressure  is the actual value of bottomhole pressure 

( )estBHP  is the estimated value of bottomhole pressure  is the estimated value of bottomhole pressure 
  
2. Average Absolute Percent Relative Error (AAPE): 2. Average Absolute Percent Relative Error (AAPE): 
It measures the relative absolute deviation from the 
experimental values, defined by: 
It measures the relative absolute deviation from the 
experimental values, defined by: 
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 (This will be considered as the main criterion in statistical 
error analysis throughout this study). 
 
3. Minimum Absolute Percent Relative Error: 
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5. Root Mean Square Error: 
Measures the data dispersion around zero deviation, defined 
by: 
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6. Standard Deviation: 
It is a measure of dispersion and is expressed as: 
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Where; (m-n-1) represents the degree of freedom in multiple- 
regression. A lower value of standard deviation indicates a 
smaller degree of scatter. 

 
7. The Correlation Coefficient: 
It represents the degree of success in reducing the standard 
deviation by regression analysis, defined by: 

‘R’ values range between 0 and 1. The closer value to 1 
represents perfect correlation whereas 0 indicates no 
correlation at all among the independent variables. 
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Table 1: Statistical Analysis of the Used Data. 

 Training Data (106 sets) Validation Data (41 sets) Testing Data (41 sets)
Property Min Max Avg. Min Max Avg. Min Max Avg.

Bottomhole pressure, psi 1227 3217 2222 1911 3124 2517.5 1906 2984 2445 
Oil rate, bbl/d 280 19618 9949 469 17243 8856 840 16437 8638.5 
Gas rate, mscf/d 33.6 13562.2 6797.9 81.6 12586 6333.8 134.4 8278.1 4206.2 
Water rate, bbl/d 0 11000 5500 0 9300 4650 0 10500 5250 
Tubing diameter, inches 1.995 4 2.9975 2.441 4 3.2205 3.813 4 3.9065 
Depth, ft 4550 7100 5825 4964 7043 6003.5 4550 6933 5741.5 
API, (oil gravity) 30 37 33.5 30 37 33.5 30 37 33.5 
Surface temperature, oF 76 160 118 90 160 125 90 159 124.5 
Bottomhole temp., oF 157 215 186 162 215 188.5 162 214 188 
Wellhead pressure, psi 80 780 430 95 960 527.5 180 750 465 
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 Table 2: Statistical Analysis Results of Empirical Correlations and Mechanistic Models 

MODEL E a E r E Max E Min RMSE R STD

Kabir and Hasan15  9.230 -7.190 35.140 0.486 11.944 0.7502 215.644 

Ansari et al.18 6.754 -1.451 16.612 0.025 8.089 0.8178 196.930 

Chokshi et al.19 5.759 -2.852 17.843 0.355 7.009 0.8836 155.684 

Gomez et al.20 5.204 1.212 26.617 0.019 7.643 0.8324 184.069 

Hagedorn and Brown2 5.029 1.461 26.569 0.141 7.373 0.8508 177.840 

Duns and Ros3  5.758 -2.834 20.437 0.009 7.564 0.8495 173.083 

Orkiszewski4 5.376 4.617 20.592 0.042 7.251 0.9015 138.053 

Beggs and Brill5 5.690 -1.892 19.533 0.326 7.144 0.8647 167.755 

Mukherjee and Brill7 4.903 -1.164 16.209 0.201 6.217 0.8792 147.572 

This Study "ANN" 2.165 -0.419 7.1401 0.066 2.801 0.9735 66.245 
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Figure 1: Schematic of the Developed Model. 
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Fig. 2 Effect of Gas Rate on BHP, D= 3.958 in. Fig. 3: Effect of Tubing Diameter on BHP. 
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Fig. 4: Effect of Water Rate on BHP, D = 3.958 in. Fig. 5: Effect of Oil Rate on BHP, D=3.958 in. 
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Fig. 6. Effect of Pipe Length on BHP, D=3.958 in. Fig. 7: Statistical Accuracy of BHP Grouped by Oil Rate. 
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Fig. 8: Statistical Accuracy of BHP Grouped by Gas Rate. Fig. 9: Statistical Accuracy of BHP Grouped by Water Rate. 
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Fig. 10: Statistical Accuracy of BHP Grouped by Tubing Size. Fig. 11: Statistical Accuracy of BHP Grouped by Tubing Depth. 
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Fig. 12: Cross plot of BHP for Ansari et al.  Model. Fig. 13: Cross plot of BHP for Chokshi et al.  Model. 
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Fig. 14: Cross plot of BHP for Gomez et al.  Model. Fig. 15: Cross plot of BHP for Hasan and Kabir Model. 
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Fig. 16: Cross plot of BHP for Duns and Ros Correlation. Fig. 17: Cross plot of BHP for Chokshi et al.  Model. 
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Fig. 18: Cross plot of BHP for Mukherjee and Brill Correlation. Fig. 19: Cross plot of BHP for Orkiszewski Correlation. 
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Fig. 20: Cross plot of BHP for Beggs and Brill Correlation. Fig. 21: Cross plot of BHP for Present ANN  Model. 

  
 
 

 


