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a b s t r a c t

Spar platform has been regarded as a competitive floating structure for deep and ultra deep water oil

and gas production. In this paper, an efficient methodology has been developed to determine the slow

motion responses of slender floating offshore structures due to wave forces. Based on this methodology,

a MATLAB program named ‘TRSPAR’ was developed to predict the dynamic responses in time domain

and it was used in this study to obtain the numerical results of a typical truss spar platform connected

to sea bed using nine taut mooring lines. The difference frequency forces were calculated using the

principles of the extension of Morison equation for an inclined cylinder and the wave kinematics were

predicted using hyperbolic extrapolation. Mooring lines were modelled as nonlinear springs and their

stiffness was obtained by conducting the static offset simulation. Because of the lack of detailed

calculations in literature, most of the equations used were derived and presented in this paper. The

effects of the different sources of the second order difference frequency forces were compared for

inertia and drag forces in terms of response spectra. To validate the TRSPAR code, its results were

compared to results of a typical truss spar model test.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

As offshore oil and gas exploration and production are going
into ultra deep water, many innovative floating offshore struc-
tures are being proposed for cost savings. One of these innova-
tions is spar platform. Although the concept is not new (Rudnick,
1964, 1967), it has been recently the subject of renewed interest.
Spars can be more economical in deep water than TLPs, they are
insensitive to the deck load (Perryman and Beynet, 1994), and
they can be relocated regardless of the number of wells or the
water depth. Recently truss spar platforms, which are signifi-
cantly modified from the conventional classic spar platforms, are
becoming more popular. The conventional spar has a long circular
cylinder hull, whereas the truss spar consists of an upper circular
tank, a middle truss part with some horizontal plates and a lower
ballast tank at the keel. Because these two types of spars are quite
different in shape, their motion characteristics are also quite
different.

The spar is designed to have natural periods of vibration much
higher than the dominant wave periods, so that there are hardly
any linear forces at the natural frequencies. Due to the nature of

nonlinear surface water waves, the difference frequency interac-
tions among ocean wave components may result in low frequency
wave excitation forces. Although the nonlinear low frequency
wave forces are small in magnitude, the structure, however, may
experience large low frequency motions, known as slow drift
motions, because the exciting frequency is close to the natural
frequency.

The research interest on spars has evolved recently and within
a short period several researchers have investigated the dynamic
response of spars numerically as well as experimentally. Most of
the previous studies on the second order forces were applied to
the first generation spar, namely classic spar.

A study by a Joint Industry Project (Johnson, 1995) showed
that the responses of spar buoy at the wave frequency, even near
the spectrum peak frequency, were small but relatively large near
its natural frequencies, although elevation measurements showed
that the incident waves had insignificant energy at these low
frequencies. Several studies demonstrated the importance of
these second order forces. Mekha et al. (1995, 1996) studied the
behaviour of spar in deep water. In their work, they applied two
different methods to calculate the wave forces in time domain
considering several second order effects. They also investigated
the effect of modelling the mooring lines as nonlinear spring.
Diffraction theory and boundary elements were used by Ran et al.
(1996) to study the behaviour of spar in time domain using
second order difference frequency wave loads. This was further
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enhanced by Ran and Kim (1997) and Ran et al. (1998), who
executed a nonlinear coupled dynamic analysis of a moored spar
in random waves with and without current in both time and
frequency domains.

A new methodology was developed by Cao and Zhang (1996)
to predict slow drift responses of slender compliant offshore
structures due to ocean waves. They used hybrid wave model
(Zehang et al., 1995) and the Morison equation to predict the
wave kinematics and wave forces respectively for irregular waves.
Hybrid wave model is different from the other approaches by
decomposition of the observed wave elevation into ‘free’ waves
up to second order accuracy while the conventional methods
consider the wave elevations to be only linear combinations of
individual sinusoids.

In this paper, a quasi-static cable analysis was conducted in
order to obtain the tension-displacement characteristics of the
mooring system. This study addresses the effect of the difference
frequency forces on the dynamic responses of truss spar using an
efficient numerical scheme for predicting the first and second
order dynamic responses of typical floating offshore structures. In
addition, the paper includes a comparison between numerical and
experimental results for validating the numerical scheme.

2. Theoretical formulation and numerical scheme

2.1. Governing equations

One of the most useful theories in calculating the kinematics of
a progressive wave (Fig. 1) is linear airy theory (LAT), which is
based on the assumption that the wave height (H) is small
compared to the wave length (L) or water depth (d). This
assumption allows the free surface boundary conditions to be
linearized by dropping wave height terms which are beyond the
first order and also to be satisfied at the mean water level (MWL),
rather than at the oscillating free surface. For unidirectional
regular waves, the first order velocity potential is given by

fð1Þ ¼
ag

o
coshks

coshkd
siny ð1Þ

where g is the gravity acceleration. o, k and a are the wave
frequency, wave number and wave amplitude, respectively.

y¼ kx�otþb

where b is the initial phase angle.
The wave elevation is

Z¼ H

2
cosy ð2Þ

The water-particle velocities and accelerations in the x and z

directions are

u¼
H

2
o coshks

sinhkd
cosy ð3Þ

v¼
H

2
o sinhks

sinhkd
siny ð4Þ

@u

@t
¼

H

2
o coshks

sinhkd
siny ð5Þ

@v

@t
¼�

H

2
o sinhks

sinhkd
cosy ð6Þ

For random waves, these equations apply to each wave
component in order to get the resultant wave kinematics by
adding up the individual effects from all wave components.

In this study, hyperbolic extrapolation is used. It is based on
the assumption that the wave kinematics between the MWL and
free surface follow the same LAT hyperbolic variations with depth
as they do up to the MWL.

The wave forces are decomposed into two components;
normal and tangential to the structure. The preceding component
is calculated using an extension of the Morison equation for an
inclined cylinder, which is based upon normal velocities and
accelerations as shown in Fig. 2

ux ¼ u�CxðCxuþCzvÞ

uz ¼ v2CzðCxuþCzvÞ ð7Þ

where Cx, Cz are x and z components, respectively, of the unit
vector C, which is acting along the cylinder axis directed up
or down.

Two coordinate systems are illustrated in Fig. 3, the global axis
(xoz) is fixed at MWL and the local axis (zGZ) is fixed on the centre
of gravity of the structure.

The normal wave force per unit length can be written as

f ¼ rCMA
@w

@t
þ

1

2
rCDD9w9wþrCmAwtT Vt ð8Þ

where r is the mass density of wave. CM, CD and Cm are the inertia,
drag and added mass coefficients, respectively. A and D are the
cross-sectional area and structure diameter, respectively. w is the
relative normal velocity.

t¼ sinW
cosW

� �

where W is the pitch angle.

Fig. 1. Definition sketch for a progressive wave train. Fig. 2. Wave kinematics components on a segment on inclined cylinder.
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The last term in Eq. (8) represents the normal axial divergence
in which the velocity gradient matrix is given by

V ¼
@u
@x

@u
@z

@v
@x

@v
@z

" #
ð9Þ

The tangential component is predicted by carrying out a
double integration of the dynamic pressure on the bottom surface
of the structure B, which is derived from the Bernuolli equation
and the potential velocity.

FExt ¼

ZZ
rga coshðksÞ

coshðkdÞ cosyþ 3
4rg pH2

L
1

sinhð2kdÞ
cosh 2ks
sinh2 kd

� 1
3

h i
cos2y

�

�
1

4
rg

pH2

L

1

sinh2kd
cosh2ks�1
� ��

@B ð10Þ

2.2. Second order wave forces

The potential velocity for the interaction between the wave
components within a random wave was derived up to the second
order by Longuet-Higgins and Steward (1960) using a conventional
perturbation approach

j¼
X

Ai
coshðkisÞ

coshðkidÞ
sinyiþAii

coshð2kisÞ

sinh4
ðkidÞ

sin2yi

( )

þ
XX

Ai�j

cosh½ðki�kjÞ s�

cosh½ðki�kjÞ d�
sinðyi�yjÞ

�

þAiþ j

cosh½ðkiþkjÞs�

cosh½ðkiþkjÞd�
sinðyiþyjÞ

�
ð11Þ

where the first S indicates a summation over ith waves and the
second S is a summation over jth interacting waves for oi4oj only.

Also Aii ¼ 3ai
2oi=8 ð12Þ

l¼oj=oi ð13Þ

ai ¼ cothðkidÞ ð14Þ

Ai�j ¼ aiajoiðaiaj�1Þ=2½2lð1�lÞðaiajþ1Þ

2l3
ðaj

2�1Þþai
2�1�=½ðai�lajÞ

22ð1�lÞ2� ð15Þ

For Aiþ j, only the signs for aj and oj will be changed.
The first term in Eq. (11) represents the first order potential

velocity, whereas the second, third and fourth terms stand for
second order potential velocity working at a frequency twice
that of the linear term, difference frequency and sum frequency,
respectively.

As mentioned earlier, floating structures, like spar, have
natural frequencies lower than the incident ocean wave frequen-
cies so that the third term in Eq. (11) is the most important term
in studying the effects of the second order forces on spar.

The second order difference frequency forces can be classified
into five categories:

1. Structure displacement
2. Axial divergence
3. Free surface fluctuation
4. Convective acceleration
5. Temporal acceleration of the second order incident wave.

The inertia and drag forces are calculated in the structure
displaced position and the effect of the free surface fluctuation are
also considered. The convective acceleration is added to the first
and second order temporal accelerations to obtain the total wave
acceleration for the inertia force.

2.2.1. Inertia forces

Because spar platforms have low Keulegan–Carpenter para-
meter (KC), the contribution of drag force is small compared to
the inertia force. Up to the second order, the inertia force can be
written as

FI ¼

Z nt

nb

rCMA
@ðwSDÞ

@t
U@nþ

Z Z
rCMA

@ðwFSÞ

@t
U@n

þ

Z nt

nb

rCMAw:
CAU@nþ

Z nt

nb

rCMA
@ðwð2ÞTA Þ

@t
U@n ð16Þ

where the first, second, third and fourth parts of Eq. (16) are for
the second order difference frequency inertia forces due to the
structural displacement, free surface fluctuation, convective and
temporal accelerations respectively,

R nt

nb
is the integration

between the bottom and the top of the structure, and
R nis the

integration between MWL and the instant free surface.

2.2.1.1. Structure displacement. The forces on the structure must be
calculated at the displaced position instead of at the mean position.
This adds nonlinear force on the spar (Li and Kareem, 1992). The
horizontal and vertical wave particle accelerations up to the second
order can be written as

@u

@t
¼
X

aio2
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coshðkisÞ

sinhðkidÞ
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h i
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where xGm and gm are surge and pitch amplitudes, respectively. The
first term in Eqs. (17) and (18) is corresponding to the wave
horizontal and vertical accelerations at the mean position while the
second term is representing the nonlinear structural displacement
effect. When i¼ j Eq. (18) contributes to the mean force.

Fig. 3. Global and local coordinates used for dynamic analysis.
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2.2.1.2. Axial divergence. Morison equation has been modified by
Rainey (1989) by adding a new term to the original formula. This
term, which is sometimes known as the Rainey axial divergence
correction, represents a second order acceleration in addition to
Morison equation. This normal acceleration is given by

wtT Vt¼ u�
@x

@t

� 	
�Cx Cx u�

@x

@t

� 	
þCz v�

@z

@t

� 	� 	� �
tT VtcosW

� v�
@z

@t

� 	
�Cz Cx u�

@x

@t

� 	
þCz v�

@z

@t

� 	� 	� �
tT VtsinW

ð19Þ

where

u�
@x

@t

� 	
tT Vt¼ ADhr1 sin2WþðADhr2þADhrMean2ÞsinWcosW

þðADhr3þADhrMean3ÞsinWcosWþADhr4 cos2W ð20Þ

ADhr1 ¼
XX

oioj aiaj
cosh kis coshkjs
sinh kid sinhkjd

ðkj�kiÞ

�

þajkjðxGimþngimÞ
coshkjs

sinhkjd

� �� 	

�aikiðxGjmþngjmÞ
coshkis

sinhkid

� 	�
sinðyi�yjÞ

2
ð21Þ

ADhr2 ¼
XX

oioj aiaj
kj sinhkjs cosh kisþki sinhkis coshkjs

sinh kid sinhkjd

�

þajkjðxGimþngimÞ
sinhkjs

sinhkjd

� �

þaikiðxGjmþngjmÞ
sinhkis

sinhkid

� ��
cosðyi�yjÞ

2
ð22Þ

ADhr3 ¼ ADhr2 ð23Þ

ADhr4 ¼
XX

oioj aiaj
cosh kis cosh kjs
sinh kid sinh kjd

ðki�kjÞ

�

þaikiðxGjmþngjmÞ
coshkis

sinhkid

� �� 	

�ajkjðxGimþngimÞ
coshkjs

sinhkjd

� 	�
sinðyi�yjÞ

2
ð24Þ

v�
@z

@t

� 	
tT Vt¼ ðADvr1þADvrMean1Þsin2W

þðADvr2þADvrMean2ÞsinWcosW
þðADvr3þADvrMean3ÞsinWcosW
þðADvr4þADvrMean4Þcos2W ð25Þ

ADvr1 ¼�
XX

oiojaiaj

sinhkjs

sinhkjd
ki

coshkis

sinhkid
þ

sinhkis

sinhkid
kj

coshkjs

sinhkjd

� �
cosðyi�yjÞ

2

þ
XX

ajkjoj

coshkjs

sinhkjd
ZGim�aikioi

coshkis

sinhkid
ZGjm

� �
sinðyi�yjÞ

2
ð26Þ

ADvr2 ¼
XX

oiojaiaj

sinhkissinhkjs

sinhkidsinhkjd
ðkj�kiÞ

sinðyi�yjÞ

2

þ
XX

oioj aiki
sinhkis

sinhkid
ZGjmþajkj

sinhkjs

sinhkjd
ZGim
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�

cosðyi�yjÞ

2

ð27Þ

ADvr3 ¼ ADvr2 ð28Þ
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oiojaiaj
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sinhkid
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þ
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sinhkid
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þ
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sinhkid
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�

sinðyi�yjÞ
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ð29Þ

where ZGm is the heave amplitude. Since some of the above
equations have a difference frequency cosine terms, there will

be a contribution to the mean force. This will occur when i¼ j.

ADhrMean2 ¼
1

2

X
o2

i aiki
sinhkis

sinhkid

� �
ai

coshkis

sinhkid
þxGimþngim

� �
ð30Þ

ADhrMean3 ¼ ADhrMean2 ð31Þ

ADvrMean1 ¼�
1

2

X
a2

i o
2
i ki

sinhkiscoshkis

sinh2 kid

" #
ð32Þ

ADvrMean2 ¼
1

2

X
aio2

i ki
sinhkis

sinhkid
ZGim ð33Þ

ADvrMean3 ¼ ADvrMean2 ð34Þ

ADvrMean4 ¼
1

2

X
a2

i o
2
i ki

sinhkiscoshkis

sinh2 kid
ð35Þ

2.2.1.3. Free surface fluctuation. The integration of the first order
accelerations from the MWL to the wave free surface gives
another source of the nonlinear difference frequency forces. The
integration of the corresponding second order horizontal and
vertical accelerations leads toZ n @u

@t
U@n¼

XX
aiaj

g

cosW
ðki�kjÞ

sinðyi�yjÞ

2
ð36Þ

Z n @v

@t
U@n¼�

g

cosy

X
aiajðkiþkjÞ

cosðyi�yjÞ

2
ð37Þ

As in the axial divergence effect, there is also a contribution to the
mean force when putting i¼ j in Eq. (37)Z n @v

@t
U@n¼�

g

2cosy

X
a2

i ki ð38Þ

2.2.1.4. Convective acceleration. The total wave particle acceleration
is due to the change of the wave particle velocity with time and
space. The change with time is known as temporal acceleration
while the change with space is known as convective acceleration.
The horizontal and vertical wave particle convective accelerations
up to the second order can be written as

u
@u

@x
þv

@u

@z

� 	
¼�

XX
aiajoiojðki�kjÞ

�
coshðkiþkjÞs

sinhkidsinhkjd

� �
sinðyi�yjÞ

2
ð39Þ

u
@v

@x
þv

@v

@z

� 	
¼
X

a2
i o

2
i ki

coshkissinhkis

sinh2 kid

" #

þ
XX

aiajoioj ðkiþkjÞ
sinhðkiþkjÞs

sinhkidsinhkjd

� �� �

�
cosðyi�yjÞ

2
ð40Þ

The first part of Eq. (40) contributes to the mean force. It is
interesting to compare the free surface effect with the convective
acceleration, using Eqs. (36), (37), (39), and (40) for this purpose, one
can observe that the two forces are working opposite to each other.

2.2.1.5. Temporal acceleration. For the spar, the second order wave
particle acceleration derived from the second order potential at
the difference frequency due to the wave components interaction
has a major part of the forces at the natural frequencies compare
to the first order wave acceleration. The horizontal and vertical
wave particle temporal accelerations up to the second order can
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be written as

As in the above equations, @v=@tð2Þ will contribute to the mean
force when i¼ j.

2.2.2. Drag force

In the case of inertia force dominant systems, such as spar, the
system may be approximated with a reasonable accuracy as a linear
system in calculating the drag force and a linearization method may
be adopted.

The linear approximation for the drag force per unit length is

fD ¼
1

2
rCDD

ffiffiffiffi
8

p

r
swrwr ð43Þ

where swr is the variance of the relative normal wave particle
velocity. wr is the relative normal velocity.ffiffiffiffi

8

p

r
swrwr ¼

ffiffiffiffi
8

p

r
½ðsururÞ�CxðCxðsururÞþCzðsvrvrÞÞ�cosW

n
�½ðsvrvrÞ�CzðCxðsururÞþCzðsvrvrÞÞ�sinW

�
ð44Þ
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8

p

r
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8

p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
oi ai
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s
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X
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ð45Þ

ffiffiffiffi
8

p

r
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8

p
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X
oiZGim sinyi

� �
ð46Þ

In Eqs. (45) and (46) the first part contributes to the excitation
force and the second part to the damping of the system. Although
Eqs. (45) and (46) represent the linear approximation of the drag
force, there are two sources of the second order slow varying
difference frequency forces involved. One is due to the integration
of the wave forces at the displaced position and the other is due to
free surface fluctuation effect.

2.2.2.1. Structure displacement. Just like the inertia force,
calculation of the drag force at the displaced position of the
structure adds a second order term as follows:ffiffiffiffi

8

p

r
surur ¼�
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8

p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
oi ai

coshkis

sinhkid

� �
�xGim�ngim

� �� 	2

=2

s

�
XX

aioikiðxGjmþngjmÞ
cosh kis
sinh kid

h i��

þajojkjðxGimþngimÞ
coshkjs

sinhkjd

� ��
cosðyi�yjÞ

2

�
ð47Þ
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2.2.2.2. Free surface fluctuation. As for the inertia force, there is an
important source of the second order difference frequency forces
coming from the integration of the linearized drag force up to the
free surface. The expression up to the second order is

FFS
D ¼

ffiffiffiffi
8

p

r
rCD

D

2
ffiffiffi
2
p
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2.2.2.3. Mean drag force. As for the inertia force, there will be a
contribution to the mean force when i¼ j in Eqs. (47) and (49).
These equations for the mean force can be written asffiffiffiffi
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2.3. Numerical integration approach

All the above equations are incorporated in a MATLAB program
named ‘TRSPAR’ for calculating the wave forces. Newmark-beta
integration scheme was adopted to solve the equations of motion

Mf g
@2xG

@t2

" #
þ Cf g

@xG

@t

� �
þ Kf g xG½ � ¼ FðtÞ½ � ð52Þ

where {M} is made up of body mass and added mass components
as given in Eq. (53) and ½@2xG=@t2�is the structural acceleration
vector. The resultant force can be defined as

Mf g
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" #
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2
6664

3
7775 ð53Þ

where m and I denote body mass and mass moment of inertia about
the y-axis, respectively. The added mass is determined by integrat-
ing the added mass from the bottom of the structure/member to
the instantaneous surface elevation. The computations of added

@u
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ð2Þ
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mass forces and moments are as follows:

m11 ¼

Z nt

nb

rCmAU@ncosWcosW

m12 ¼m21 ¼�

Z nt

nb

rCmAU@nsinWcosW

m13 ¼m31 ¼

Z nt

nb

rCmAnU@ncosW

m22 ¼

Z nt

nb

rCmAU@nsinWsinW

m23 ¼m32 ¼�

Z nt

nb

rCmAnU@nsinW

m33 ¼

Z nt

nb

rCmAn2
U@n ð54Þ

fCg½@xG=@t� is the structure damping matrix multiply by body
velocity vector in the considered degrees of freedom. The resultant
force can be defined as

Cf g
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@t

� �
¼

c11 0 0

0 c22 0

0 0 c33

2
64

3
75

@xG
@t
@zG
@t

@W
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2
664

3
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Damping sources can be identified as structural, radiation, wave
drift and mooring lines. The significant contribution comes from the
drag force on the truss spar when using the Morison equation as
mentioned in Section 2.2.2. The structure damping of the system is
small compared to the other forces. That is due to the low natural
frequencies of the system in all degrees of freedom. The computa-
tions of the structure damping elements are as follows:

c11 ¼ 2xsonsm

c22 ¼ 2xhonhm

c33 ¼ 2xponpI ð56Þ

where the subscripts s, h and p stand for surge, heave and pitch,
respectively, x is the damping ratio in the specified direction of
motion and on is the natural frequency of the system in the
specified degree of freedom. Wave drift damping can be added to
the C matrix as

fCg ¼

c11þB11wd
0 �zG � B11wd

0 c22 0

�zG � B11wd
0 z2

G � B11wd

2
64

3
75 ð57Þ

where zG is z-coordinate of the centre of gravity.

B11wd ¼ 2:6rRa2oðkRÞ2, whenðkRÞo1

¼ 2:6rRa2o, otherwise ð58Þ

where (kR) is the diffraction parameter.
In addition to the aforementioned damping, heave plates greatly

increase the heave added mass and viscous damping as follows:

F ¼
1

2
rU9U9L2CDþr

@U

@t
L3CA ð59Þ

where CD and CA are drag and added mass coefficients for the heave
plates, respectively. U and @U=@t represent the velocity and accel-
eration, respectively, of the plate perpendicular to its plane.
fKg½xG� is the system stiffness matrix multiplied by displacement

vector. The stiffness matrix is composed of two main components,
hydrostatic and mooring line stiffness matrices. The mooring lines,
which are represented here by linear/nonlinear massless springs
attached at the spar fairleads, are the only source of stiffness in the
direction of surge motion. The hydrostatic buoyancy force provides
the heave restoring force. Both types of stiffness contribute to the

pitch stiffness. The resultant restoring force can be defined as

fKg½xG� ¼
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0 0 k3

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Hydrostatic

þ

kx 0 kxh2

0 0 0

kxh2 0 kxh2
2

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mooring lines

2
6666664

3
7777775

xG

zG

W

2
64

3
75 ð60Þ

where k2¼prg (D/2)2, k3¼buoyancy force�distance from G to B,
kx¼horizontal spring stiffness, h2¼distance from G to fairlead, In
general, kx is a nonlinear function of the structure displacements.
Thus the solution process involves updating the K matrix for each
new displacement.

3. Numerical results and discussions

A numerical simulation for a typical truss spar, as shown in
Fig. 4, with nine mooring lines was conducted. The physical
characteristics of the structure and the characteristics of the
mooring lines are summarized in Tables 1 and 2 respectively.

Fig. 4. Overall spar configuration (all dimensions are in m).

Table 1
Physical characteristics of the truss spar.

Weight 389.80 ton

Vertical centre of gravity (KG) 126.34 m

Buoyancy, basic 389.80 ton

Vertical centre of buoyancy (KB),

basic

152.4 m

Radius of gyration for pitch 86.2 m

Table 2
Characteristics of mooring lines.

Type Upper section Middle section Lower section

K4 chain K4 chain K4 chain

Size (m) 0.124 0.124 0.124

Length (m) 76.2 1828.8 45.7

Wet weight (kg/m) 280.5 65.4 280.5

Eff. modulus EA (Kn) 665.9 133.9 858.9

Breaking strength (Kn) 131.9 124.6 131.9
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3.1. Quasi-static simulation

A separate MATLAB program was developed to perform a
quasi-static simulation for mooring line system by applying

variable static forces at the fairlead. As a result, mooring stiffness
curve was obtained, as shown in Fig. 5. The figure shows that the
mooring line system provides nonlinear stiffness to the structure.
Moreover, mooring lines restoring force caused by positive

Fig. 5. Quasi-static simulation: restoring force vs. horizontal excursion.
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Fig. 6. Surge spectra: mean position (MP)þstructure displacement (SD)þdrag force (DF).
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Fig. 7. Surge spectra: MPþSDþDFþaxial divergence (AD).
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horizontal excursion, which was in the same direction of the
waves, was higher than those due to negative surge motion
particularly in relatively high horizontal transient response.

3.2. Time domain simulation

Numerical studies were made using TRSPAR which included
almost all the nonlinear effects up to the second order. The

wave series considered here was simulated from the 100-year
JONSWAP spectrum with a significant wave height of 13 m and a
peak wave period of 14 s. The individual effects of the nonlinear
difference frequency wave forces were examined and compared
in terms of response spectra.

3.2.1. Surge response

The results, which are shown in Figs. 6–10, represent five
stages corresponding to the addition of individual nonlinear
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Fig. 8. Surge spectra: MPþSDþDFþADþfree surface fluctuation (FS).
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Fig. 9. Surge spectra: MPþSDþDFþADþFSþconvective acceleration (CA).
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Fig. 10. Surge spectra: MPþSDþDFþADþFSþCAþtemporal acceleration (TA).
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forces. It was observed that, in all figures, slowly varying surge
responses were dominant. Moreover, the wave frequency surge
responses did not change much throughout the addition process
and hence the discussions are focused only on the second order
responses. These low frequency surge responses were caused by
the interactions between the wave components among the
random wave.

Fig.6 represents the first stage of the process, which combined
the calculation of the wave forces at the mean position with the
effect of the structure displacement and the linearized drag force,
which contributes to the damping of the system. In Fig. 7, where
the axial divergence was added, the response increased from
1.56�105 to 2.85�105 m2 s. The addition of free surface fluctua-
tion in Fig. 8 shows that the response greatly increased to
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Fig. 11. Pitch spectra: MPþSDþDF.
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Fig. 12. Pitch spectra: MPþSDþDFþAD.
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Fig. 13. Pitch spectra: MPþSDþDFþADþFS.
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8.45�105 m2 s. In Fig. 9, by adding the second order convective
acceleration, the surge response reduced to 3.385�105 m2 s. This
also agreed with Eqs. (36), (37), (39) and (40), which state that the
free surface and convective acceleration effects act opposite to
each other. Moreover, the effect of the free surface was more than
the effect of the convective acceleration. Finally the second order
temporal acceleration was added, as shown in Fig. 10. Also the
surge spectra increased and reached 4.5�105 m2 s.

3.2.2. Pitch response

The results for pitch response are shown in Figs. 11–15 in a
way similar to the one used for the study with surge motion. As in
surge response, slowly varying pitch responses were dominant.
Also, the wave frequency pitch responses did not vary much
during the addition process, hence the discussion will focus only
on the second order responses.

As shown in Fig. 11, pitch response due to the combined effect
of calculation of the wave forces at the mean position with the
effect of the structure displacement and the linearized drag
force reached 2.1�104 deg2 s. In Fig. 12, pitch response was
increased to 5.2�104 deg2 s because of adding the axial
divergence. Similar to surge motion, adding the free surface
fluctuation, as shown in Fig. 13, magnify pitch response which
reached 1.98�105 deg2 s. Convective acceleration in Fig. 14 per-
forms as in surge motion and reduced the pitch response to

1.12�105 deg2 s. Finally the second order temporal acceleration
was added, as shown in Fig. 15. Also the pitch spectra increased
and reached 1.588�105 deg2 s.

4. Comparison with experimental data

To validate the developed numerical scheme, a comparison
between numerical results and the corresponding experimental
data was conducted for the typical truss spar shown in Fig. 16.
The experimental studies, which were carried out at the FORCE
Technology basin are related to Kikeh project dry tree unit
(Technip Document, 2005). The model scale used was 1–60.

Fig. 17 shows the truss spar model at FORCE Technology basin.
The total weight of the prototype was 54�103 ton. The truss
consisted of three bays and a box like soft tank with a length of
10.7 m. There were two heave plates with openings for the risers
and strakes with cut-outs for mooring lines and transportation.

The prototype mooring system consisted of ten mooring lines
in four groups. The mooring coordinate system is shown in Fig. 18
and the fairleads are located 5.5 m above the hard tank bottom.
Mooring line characteristics and corresponding prototype preten-
sion are given in Tables 3 and 4, respectively. In model test, four
mooring lines consisting of length of chain and springs were used.
Each mooring line represents the stiffness of a corresponding
mooring group in the prototype.
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Fig. 14. Pitch spectra: MPþSDþDFþADþFSþCA.
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Fig. 15. Pitch spectra: MPþSDþDFþADþFSþCAþTA.
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Figs. 19–21 show the comparison between the measured
Fourier amplitude spectra (FAS) of the model tests and those
predicted by TRSPAR, which included all the nonlinear second

order slowly varying wave forces. These results are for surge,
heave and pitch responses due to random wave with a significant
wave height of 6 m and a peak period of 11.7 s. In general,
there are good agreement between the predicted and the corre-
sponding measured results in both regions, namely wave fre-
quency and low frequency regions. The fairly small differences
between these results might be caused by the strakes and risers
contributions which were modelled in the model test, but not in
TRSPAR.

5. Conclusions

According to the numerical study performed on the truss spar
platform, the following conclusions can be drawn:

1. An efficient methodology was developed to conduct a
dynamic analysis for floating offshore structures. This metho-
dology takes care of the inclination of the structure during
the dynamic analysis using the extension of the Morison
equation for an inclined cylinder for predicting the wave
forces and hyperbolic extrapolation for calculating the wave
kinematics.

2. Due to the lack of detailed analysis procedure in litera-
ture, the equations used for determine the slow varying
difference frequency wave forces are derived and presented
in this paper.

Fig. 16. Overall configuration of a typical truss spar platform (all dimensions are

in m).

Fig. 17. A typical truss spar model at FORCE Technology.

Fig. 18. Prototype spar mooring configuration.

Table 3
Truss spar prototype mooring line properties.

Spar mooring Prototype

Platform/anchor chain

Type R4 Studless

Diameter 12.4 cm

Wet weight 277 Kg/m

Wire rope

Type Spiral strand

Diameter 10.8 cm

Wet weight 48.2 Kg/m
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3. A MATLAB program namely ‘TRSPAR’, which based upon the
above methodology, was developed to determine the dynamic
responses of truss spar platform. This numerical model includes
almost all the nonlinear effects up to the second order.

4. A separate MATLAB program using quasi-static analysis was
developed to predict the stiffness of mooring lines. From the
results, mooring line system shows nonlinear behaviour. It
was shown that the restoring force caused by positive hor-
izontal excursion was higher than those due to negative surge
motion particularly in relatively high surge motion.

5. Surge and pitch motion results showed that the second order
responses were dominant and the wave frequency motions
hardly changed throughout the study.

6. Except for the convective acceleration, all other second order
effects contributed positively to the surge and pitch motions. It
was shown that the magnitude of the convective acceleration is
almost equal to the magnitude of the free surface fluctuation.

7. A model test correlation with TRSPAR has been made. The
measured results agree with the corresponding predictions.
This implies that the developed numerical scheme is capable

Table 4
Truss spar prototype mooring line pretensions.

Line No. 1 2 3 4 5 6 7 8 9 10

Pretension (Kn) 1610 1687 1640 1715 1210 1212 1238 1030 1015 1020
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Fig. 19. FAS of the surge response comparison.
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Fig. 20. FAS of the heave response comparison.
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of accurately predicting the dynamic responses of truss spar
platforms.
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Fig. 21. FAS of the pitch response comparison.
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