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The aim of this paper is to determine the exact solutions for the velocity field related to the 
magnetohydrodynamic (MHD) and rotating flow of a second grade fluid in a porous medium induced by 
accelerated flows over an oscillating plate. This is accomplished by using the Fourier sine and Laplace 
transforms. Two explicit flow situations of the fluid are considered. In each case, both sine and cosine 
oscillations of the plate are incorporated. Finally, some graphical results of the fluid’s velocity profiles 
are presented correspondingly for different values of the emerging parameters. The physical 
interpretations for these parameters are discussed with the help of these graphical illustrations. 
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INTRODUCTION 
 
Non-Newtonian fluids have received considerable 
attention because of its numerous applications in 
geophysics, engineering and industry. Such applications 
include the extension of polymer fluids, solidification of 
liquid crystals, personal care products, exotic lubricants 
and colloidal and suspension solutions (Zhaosheng and 
JianZhong, 1998). The non-Newtonian fluids have been 
mainly classified under the differential, rate and integrals 
types. The second grade fluids are the subclass of non-
Newtonian fluids and are the simplest subclass of 
differential type fluids which can show the normal stress 
effects. It was employed to study various problems due to 
their relatively simple structure. Moreover, one can 
reasonably hope to obtain exact solutions for the velocity 
field from this type of second grade fluid. For this reason, 
we have chosen this type of fluid in this study. The exact  
solution is important, because it provides reference for 
checking the accuracies of  many  approximate  solutions 
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which can be numerical or empirical. It can also be used 
as test for validating numerical schemes that are 
developed for investigating more complex flow problems. 
Exact solution of the problem is given by invoking the 
Fourier sine and Laplace transforms method. This 
method has already been successfully applied by various  
workers (Fetecau et al., 2011a, b ; Faisal et al., 2011a, 
b). As expected, the traditional Fourier sine and Laplace 
transforms method has the following important feature, 
that is, it is still a powerful technique for solving 
analytically these types of problems, which literally 
transforms the original linear differential equation into an 
elementary algebraic expression. 

The analysis of the effects of rotation and 
magnetohydrodynamic (MHD) flows through a porous 
medium and rotating frame have gained an increasing 
interest due to the wide range of applications in 
engineering, such as the optimization of the solidification 
process of metals and metal alloys, the control under-
ground spreading of chemical wastes and pollutants. 
MHD is the study of the interaction of conducting fluids 
with   electromagnetic    phenomena.   The    flow   of   an 
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electrically conducting fluid in the presence of magnetic 
field is of importance in various areas of technology and 
engineering, such as MHD power generation and MHD 
pumps. Therefore, many have discussed the flows of 
second grade fluid in different configurations and there 
are attempts in the literature to include the effects of 
rotation and MHD (Shen et al., 2006; Tan and Mazuoka, 
2005; Erdogan and Imrak, 2005; Hussain et al., 2010; 
Fetecau and Corina, 2005; Jamil et al., 2011; Corina et 
al., 2009; Islam et al., 2011). 

The objective of this work is to establish exact solutions 
for the velocity field induced by accelerated flows over an 
oscillating plate for second grade fluid. The fluid occupies 
the porous space and is electrically conducting. In 
addition, the whole system is also rotating. Two flow 
problems of the fluid are considered and their exact 
solutions for the velocity field are established. In the first 
problem, the fluid occupying the half space is bounded by 
an oscillating and accelerated rigid plate. In the second 
problem, we modified the Stokes’ second problem which 
deals with the flow between the two plates. The upper 
plate is taken stationary, while the lower one is 
accelerated and oscillating. In these problems, both sine 
and cosine oscillations are considered. Graphs of the 
solutions are also plotted and discussed.  
 
 
FORMULATION OF THE FLOW PROBLEM 
 

Let us consider a Cartesian coordinate system ( ), ,x y z . We 

consider a fluid saturated porous half space bounded by an infinite 

plate at 0z =  ( z − axis is taken normal to the plate). The whole 

system is rotating uniformly with a constant angular velocity Ω  
about the z − axis. The porous space is described by the modified 

Darcy’s law. A constant magnetic field B° acts in the 

z − direction, that is, the fluid is electrically conducting in the 

presence of an applied magnetic field ( )0,0, B°=B the magnetic 

Reynolds number is assumed small and hence the induced 
magnetic field is neglected.  
The equations governing the present flow are as given in the work 
Hayat et al. (2008). 
 

2 3
2 1

12 2
2 1

u u u
B u u

t z z t k t

αµφ
ρ υ µ α σ

µ°

 ∂ ∂ ∂ ∂ 
− Ω = + − − +   ∂ ∂ ∂ ∂ ∂        

(1) 

 
2 3

2 1
12 2

2 1u B
t z z t k t

αυ υ υ µφ
ρ µ α σ υ υ

µ
°

 ∂ ∂ ∂ ∂ 
+ Ω = + − − +   

∂ ∂ ∂ ∂ ∂   

.               (2) 

 

In the aforementioned equations ,u υ , 1, , , , ,tρ µ σ α φ  and k , 

respectively indicate the velocity field components in x  and y  

directions, fluid density, time, dynamic viscosity, electrical 
conductivity, material parameter of second grade fluid, porosity and 
the permeability of porous medium.  
 
The initial and boundary conditions are: 
 

0u υ= =  when 0 , 0 ,t z= >                                        (3) 

 
 
 
 

(0, ) ( )cosu t At UH t tω= +  or  

(0, ) ( ) sinu t At UH t tω= +
 
for  0,t >                              (4) 

 

, , , 0
u

u
z z

υ
υ

∂ ∂
→

∂ ∂
,  as    z → ∞ ,        0t >            (5) 

 

where A  is the constant acceleration, U  the amplitude , ( )H t
 
is 

the Heaviside unit step function and ω  the frequency of oscillation 

of the plate.  
 
 
SOLUTION OF THE FIRST PROBLEM 
 

Defining a complex function F u iυ= + , Equations 1 and 2 can 

be combined as: 
 

2 2 3

1 1

2 2
2 1 ,

BF F F
i F F

t z z t k t

σ α ανφ
ν

ρ ρ µ

   ∂ ∂ ∂ ∂
+ Ω+ = + − +   

∂ ∂ ∂ ∂ ∂  

o        (6) 

 

where ν  is the kinematic viscosity. The appropriate boundary and 

initial conditions are: 
 

( )0, ( ) cosF t At UH t tω= +  or   

( )0, ( )sin ,F t At UH t tω= +   0,t >                               (7) 

 

( )
( , )

, , 0
F z t

F z t
z

∂
→

∂
 as   , 0asz t→∞ > .                                                    

 

( ),0 0, 0F z z= > .                                                                  (8) 

 
In order to solve the linear partial differential Equation 6 with initial 
and boundary conditions 7 and 8, we shall apply the Fourier sine 
and Laplace transforms. For a greater generality we consider the 

boundary condition (0, ) ( )F t U t°=  with (0) 0U° =  and apply 

the Fourier sine transform with respect to z   .  We then obtain: 
 

[ ]2

2 2

2
( ) ( )

( , )
( , ) ; 0,

1 1

s
s

c U t U t
F t k

F t t
t

k k

φ
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where  
 
 

1α
α

ρ
=  , 

2

2
B

c i
σ

ρ
°= Ω +   

 

and the Fourier sine transform ( , )
s

F tη  of ( , )F z t  has to satisfy 

the conditions: 
 

( , 0) 0; 0.
s

F η η= >                                                            (10) 



 
 
 
 
Employing the Laplace transform to Equation 9, using the initial 
condition of Equation 10, and then we found that: 
 

[ ]

2 2

2
( )

( , ) ,

1
s

q U q

F q

c q
k k

η ν α
πη

φ φ
ν η ν α η α

°+

=
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(11)         

 

where q  is the transform parameter, while ( , )
s

F qη
 
and ( )U q°  

are the Laplace transform of  ( , )
s

F tη  and ( )U t° , respectively. 

 
 

Case 1  
 

(0, ) ( )cosF t At UH t tω= +  

 

In this case 
2 2 2

( )
A U q

U q
q q ω

° = +
+

  and then Equation 11 

takes the form: 
             

[ ] 2 2 2

2 2

2

( , ) .

1
s

A U q
q

q q
F q

q c
k k

η ν α
π ω

η
φ φ

ν η ν α η α
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(12)      

 

Applying the inverse Laplace transform to Equation 12, we then 
arrive at: 
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                                                        (13) 

 
Inversion of Fourier sine transform in Equation 13 gives: 
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∫

   (14) 
 
Alternative form of the solution (Equation 14) is: 
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∫

.        (15)                          

 

Expression (Equation 15) is the exact solution for the velocity field 
induced by accelerated flows over an oscillating plate for MHD 
second grade fluid in a porous medium and rotating frame.  

The resulting steady state solution ( ),
st

F z t (valid for large 

times) can be expressed as: 
 

( )( , ) 1

c
z

k

stF z t A t e

φ

ν

 
− +  
 = +
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  ( )
2 2

0 2 2 2

2
( ) sin sin( )

1

c
UH t t z d

c
k k

η ν α
ω ω η η

π φ φ
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∫
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The solution (Equation 16) can also be written as (Appendix) 
(Gradhsteyn and Rhyzik, 1994): 
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c
z
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where 
 

2 4 2 22B b S b= + + , 
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For the case (0, ) ( ) sinF t At UH t tω= +  

 
In this case, we apply similar procedure as previously applied, and 

then the starting solution ( ),F z t  and steady state solution 

( ),
st

F z t  are respectively presented as follows: 
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The solution (Equation 20) can be reduced to a closed form: 
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z

k Bz

st
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φ
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MODIFIED STOKES’ SECOND PROBLEM 
 

Here, we consider the electrically conducting fluid between the two 

plates which are of distance d  apart. The upper plate is fixed, 

whiles the lower one is oscillating and accelerating. This stated 
problem is governed by Equations 6 and 7, and the following 
conditions: 
 

( , ) 0F d t = 0,t >                                                                    (22)                                                                

 

( ,0) 0F z =  ; 0 z d< <                                                         (23) 
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The starting solution here is: 
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and the steady state solution is: 
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For the case ( )0, ( )sinF t At UH t tω= +    

 
The starting solution here is: 
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And the steady state solution is: 
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RESULTS AND DISCUSSION 
 

Here, we present the graphical illustrations of the steady 
state of the velocity profiles which have been determined 
for the MHD second grade fluid in a porous medium and 
rotating frame induced by accelerated flows over an 
oscillating plate. The discussion on the physical 
interpretation of the emerging parameters then follow 
suit. 

These profiles show the behaviours of the velocity field 
with regards to various values of the emerging 
parameters. These parameters are defined here as: 
 

1. Ω is the rotating parameter, 

2. 

2B
M

σ

ρ
°=  is the magnetic field parameter, 

3. α  is the second grade parameter, 

4. P
k

φ
=  is the porous medium. 

 
In order to illustrate the role of these parameters on the 

real   and   imaginary   parts  of  the  velocity  field ( )F z ,
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Figure 1. Profiles of the normalized steady state velocity  ( )F z  for various values of Ω  when 

.5, 1, 1, 2, 2A P M tα π= = = = = ). 
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Figure 2. Profiles of the normalized steady state velocity ( )F z  for various values of M when 

( .5A = , 1, 1, 1, 2P tα π= = Ω = = ). 

 
 
 

Figures 1 to 4 have been displayed. In these Figures, 

panels (a) depict the variations of Re [ ( )F z ] and panels 

(b) indicate the variations of – Im [ ( )F z ]. Figure 1a 

shows that the real part of the velocity profile decreases 

for various values of rotation Ω , with respect to the 

increase in z . As the number of rotation Ω  increases, it 
is found that the velocity profile decreases. Figure 1b 
indicates that the magnitude of imaginary part of the 
velocity profile increases initially and later decreases for 

various values of rotation Ω , with respect to the increase 

in z . As Ω  increases, the velocity profile also increases 
correspondingly.  

Figure 2a is prepared to show the effects of the applied 
magnetic field M on the real part of the velocity profile. 

Keeping , , ,P tα Ω fixed and varying M , it is noted that 

the real part of the velocity profile decreases by 
increasing the magnetic field parameter M . Figure 2b is 
portrayed to see the effects of the applied magnetic field 
on the imaginary part of the velocity profile. Keeping 

, , ,P tα Ω fixed and varying M , it is observed that the 

imaginary part increases initially and later decreases. 

Clearly, we observe that with increasing values of M , 

the velocity profile of ( )F z  decreases in both real and 

imaginary parts of the velocity profiles in Figure 2a and b. 
In fact this is because of the effects of transverse 
magnetic field on an electrically conducting fluid which 
gives rise to a resistive type force called the Lorentz force 
which tends to slow down the motion of   the fluid.                            
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Figure 3. Profiles of the normalized steady state velocity ( )F z  for various values of α  when 

( .5A = , 2, 1, 1, 2M P t π= = Ω = = ). 
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Figure 4. Profiles of the normalized steady state velocity  ( )F z  for various values of Pwhen 

( .5A = , 1, 2, 1, 2M tα π= = Ω = = ). 

 
 
 

Figure 3a shows the effects of second grade parameter 
α  of second grade fluid on real part of velocity profile 

when , , ,P M tΩ  are fixed. It is interesting to notice that 

increasing the second grade parameterα , would lead to 

increase in the real part of the velocity profile. Figure 3b 

is obtained when , , ,P M tΩ  are fixed and the second 

grade parameterα  is increased, and this would lead to 

imaginary part of the velocity profile increasing initially 
and later decreases. In both parts of Figure 3a and b, the 
velocity profile increases with increase in the second 
grade parameterα . This is because, the fact that 

increasing values of α  would reduce the friction forces, 

and thus assists the flow of the fluid considerably; and 
hence, the f  luid moves with greater  velocity.  Figure  4a 

indicates    the   variations   of   the    porous 

parameter P . Keeping , , ,M tα Ω fixed, it is noted that  

increasing the porous parameter P , would lead to 

decrease in the real part of the velocity profile. Keeping 

, , ,M tα Ω fixed and varying P , it is noted that the 

imaginary part increases initially and later decreases 
(Figure 4b). Here, both the real and imaginary parts of 
velocity profiles in Figure 4a and b decrease with an 

increasing values of the porous parameter P . This is due 

to the fact that increasing values of P  would lead to 
increase in the friction forces which thus slow down the 
motion of the fluid.    

The graphical illustrations showed the behaviours of 
the  steady   state   velocity   profiles   which   have  been  
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determined for the MHD second grade fluid in a porous 
medium and rotating frame, which are being induced by 
accelerated flows over an oscillating plate. These profiles 
depict the performances of the velocity field with regards 
to various values of the emerging 

parametersΩ , M ,α , P . 

 
 
Conclusion  
 
The exact solutions is established for the velocity field 
corresponding to the motion of MHD second grade fluid 
in a porous medium and rotating frame induced by 
accelerated flows over an oscillating plate. This is 
achieved by means of the Fourier sine and Laplace 
transforms technique. It is found that the solutions satisfy 
all the governing equations and all the imposed boundary 
conditions. Clearly the graphical results on the solutions 
portray the behaviour of the corresponding velocity fields 
with respect to the various emerging parameters. 
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APPENDIX 
 
In order to obtain Equation 17 from Equation 16, we use 
the result in this work (Grandshteyn and Ryzhik, 1994): 
 

2 2

0

sin( )
exp( )sin( )

( ) 2

x ax
dx aB aC

x b f f

π
∞

= −
+ ∈ +∫   ,  

 
2 2

2 2

0

( ) sin( )
exp( ) cos( )

( ) 2

x x b ax
dx aB aC

x b f

π
∞

+ ∈
= −

+ ∈ +∫ , 

 
where 
 

2 4 2 22B b f b= + + ∈  , 
2 4 2 22C b f b= + − ∈  

 
and 
 

1∈= ± . 
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