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a b s t r a c t

Consciousness of the need to decrease our unnatural weather changes and of the critical increase in the
costs of traditional sources of energy have motivated many nations to provide innovative energy stra-
tegies that promulgate renewable energy systems. For example, solar, wind and hydro related energies
are renewable energy sources, and they are environmentally friendly with the potential for broad use. All
of the load requirement conditions in comparison with single usage can provide more economical and
dependable electricity, as well as environmentally friendly sources, by compounding such renewable
energy sources using backup units to shape a hybrid scheme. Sizing the hybrid system elements opti-
mally is one of the most important matters in this type of hybrid system, which could sufficiently meet
all of the load demands with a minor financial investment. Although a number of studies have been
performed on the optimization and sizing of hybrid renewable energy systems, this study presents a full
analysis of Artificial Intelligence optimum plans in the literature, making the contribution of penetrating
extensively the renewable energy aspects for improving the functioning of the systems economically.

& 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the prominent challenges that the world faces today is
providing its needed energy while saving for the future simulta-
neously [1]. In recent times, a considerable amount of energy has
been required around the world. The world depends solely on
conventional energy sources, for example, coal, natural gas and
crude oil [2,3]. In addition, the demand for energy use is growing
every day, which, however, results in a brisk demand for the usual
fossil fuels [4,5]. Whereas these sources of energy are limited and
unload quickly, that in turn pressures the stability of potential
generations of energy demand [6–8]. In addition, the un-
predictable supply of the aforementioned sources and the negative
influence on the administrative balances between energy (petro-
leum) exporting/importing nations warrants vital investigations
on the prospects of popular means for producing energy [9]. In
recent years, global warming and climate change are two main
important issues in the global economy and environment, and
they have a considerable effect on the insufficient accessibility and
rising cost of energy [10]. The high consumption of energy in the
world has already increased concerns about supply difficulties and
significant environmental influences, such as global warming and
climate change [11–13]. The evidence from [7,14–17] concludes
that energy created by traditional energy sources causes an in-
crease in greenhouse gas discharge, which could affect global
warming. Efforts to reduce the volume of greenhouse gas emission
have led to the Kyoto agreement on the global decline of green-
house gas production. This agreement was put in place to lessen
the issue and the dependence on traditional energy systems. The
notion of greenhouse gas reduction is valid for both developing
and developed nations [18,19]. Addressing the issues discussed
above, continual potential action for sustainable improvement is
required. In addition, cost-effective, consistent, and en-
vironmentally friendly energy systems are the attributes of a
sustainable energy system that efficiently uses local assets and
networks [20]. Therefore, renewable energy sources are positioned
as one of the proficient and useful solutions [7,15]. There are dif-
ferent types of renewable energy structures, such as wind, solar,
hydro-electric, water, ocean, biomass and geothermal energy,
which have unique benefits and are suitable for applications.
Currently, some countries have the potential for different types of
energy resources, such as solar, wind, water, and geothermal, and
in addition, many companies are developing, constructing and
setting up modern and high-tech renewable energy systems.
These countries attempt to lead a large network of investigators
and other partners to utilize cutting-edge and advanced technol-
ogies that will provide a cost for renewable electricity generation
that is competitive with traditional sources of energy. Increasing
the proportions of renewable energy systems such as wind and
solar have joined the grid and will impact the fossil fuel generators
on the grid, which will lead to a decrease in emissions and costs
for the consumers. These advantages include, for example, a re-
duction in the external energy confidence and a decrease in
communication and conversion costs. Additionally, renewable
energy sources supply an important improvement over the usual
energy systems, and almost none discharge gaseous or water
pollutants during their operations [20,21]. As mentioned before in
this study, renewable energy systems are measured as capable
power producing sources. On the other hand, a disadvantage of the
specified energy selection is their irregular character and our
confidence in the weather conditions. Therefore, renewable power
production cannot completely control the power requirement of
the load at any specific instant in time [14,22–24]. This type of
difficulty is connected to the changeable character of these re-
sources, which can be solved by assimilating resources in an ap-
propriate hybrid blend. This approach causes an improvement in
the system's effectiveness and reliability of the energy supply
[7,14,25]. As a result, renewable energy access can be improved in
upcoming sustainable areas [13]. Renewable energy systems pre-
sent some helpful effects in several types of applications modes,
which have been identified to be, for example, the costs of the
systems when preventing wide-ranging consumption, assessment
efforts that are focused on fast cost falls, and the ability of these
systems in development [4]. Method designs should be most fa-
vorable in operations and component selection, to achieve elec-
trical energy from renewable energy resources, which is related to
hybrid system reliability and cost efficiency [26–28]. Therefore, the
most advantageous sizing method is to proficiently and in-
expensively use renewable energy resources [9]. Principally, the
most favorable size systems are required for comprehensive ana-
lysis to give the location and control site-dependent factors, such
as solar rays, wind rates, and temperatures, and their costs [14,29].
Computer-based simulation and optimization has become a pre-
eminent technique for designing power systems; this approach
involves comprehensive analysis [30]. There are some constraints
in the formulation and solution of the design and optimization
approach, such as the resource availability, technology, efficiency,
mathematical models and other aspects. However, the advance-
ment in computational techniques has made it easy to address
optimization problems by using a number of optimization and
simulation techniques. A number of simulation tools, such as
HOMER (Hybrid Optimization Model of Electric Renewable), HY-
BRID2 (The Hybrid Power System Simulation Model), and HOGA
(Hybrid Optimization using Genetic Algorithm), are used for the
design and optimization of hybrid systems as well as for improv-
ing their performance. One of the main branches of computer
science is Artificial Intelligence (AI), which investigates and builds
intelligent software and machines. Russell and Norvig [31] explain
that AI is “the investigate and framework of intelligent factors”, in
which an intelligent factor performs actions that maximize the
possibility of success. AI is composed of branches such as genetic
algorithms (GA), particle swarm optimization (PSO), simulated
annealing (SA), artificial neural networks (ANN) and hybrid mod-
els, including two or more previous branches. The effective and
correct application of intelligent methods cause the development
of comprehensive and useful systems with better performance or
different characteristics, which cannot be obtained compared to
using traditional approaches [32]. This paper aims at reviewing the
literature that is related to the various optimization techniques of
Artificial Intelligence Methods for Hybrid Energy Systems Opti-
mization, such as genetic algorithms (GAs), simulated annealing
(SA), and particle swarm optimization (PSO). In addition, the
characteristics of all of the methods are compared together, to help
researchers to use them effectively and in a cost-effective manner.
2. World energy scenario

According to the Energy Information Administration, the global
energy consumption is increasing by approximately 2.3% per an-
num [33]. The wind generates approximately 20% of the electricity
in Denmark. However, on a global scale, the electricity that is
produced from the wind is less than 1%. The statistics of world
energy consumption from the year 2008–2035 is expected to grow
by approximately 53% [33]. Fig. 1 exhibits the high development of
the universal energy requirement.

Fig. 2 shows the United State's electricity generation from fuel
during the years 1990–2040. Additionally, it shows that the re-
newable share would be increased by a few percent; however,
some sources, such as fossil fuels comprising coal and natural gas,
are still increasing.

The world's economic development is surprisingly dependent
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Fig. 1. World energy consumption, 1990–2035 (quadrillion Btu).

Fig. 2. US electricity generation by fuel, 1990–2040 (trillion kilowatt-h per year)
[34].
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on increasing energy requirements. In addition, fossil fuels are not
consistently spread around the globe, and if the world economy
depends heavily on them, local or global disagreement could occur
and create an energy crisis. The use of today's predictable com-
bustibles, the worldwide surroundings and the situations of some
countries have been unfavorably impacted. We must emphasize
that it is important to discover new actions to connect suitable
quantities of energy [35–38]. Fig. 3 demonstrates the energy pro-
duction in the US according to different sources. In the years 2011
Fig. 3. Energy source
and 2012, there is increased global demand for renewable sources
of energy supplied at 19% of the global energy usage in the year
2011.
3. Literature review

The design of hybrid renewable energy systems is a significant
area, and many researchers are interested in this topic. Therefore,
there is a large amount of literature on this topic, which we can
use. The design problem mentioned above is related to the energy
systems that are observed to have the optimal pattern and optimal
location, type and sizing of generation components established on
individual nodes. Therefore, this type of system can load the re-
quirements with a minimum of costs [39]. The proposal of hybrid
renewable energy can estimate the cost and production over a
lifetime of this technology. The first estimate, for the lifetime cost,
usually includes two components: the operational cost, such as the
principal cost and the preservation cost, which both point to a
“fixed cost”. Additionally, in a computation of the life span cost, the
financial values are modified according to the timing and should
be considered. Therefore, the optimized hybrid system patterns
combine producer types and sizes in the minimum life span cost
and production. Thus, the design by the lowest “Net Present Value”
(or NPV) is defined as the “optimal configuration” or “optimal de-
sign”, with all probable hybrid system designs being in optimal
transition [40,41].

There are many methods for providing an “optimal design”
indicator and many software tools that are accessible commer-
cially, to act as real-time system integration. Additionally, there are
different optimal techniques that are applied from many re-
searchers to use for hybrid renewable energy system sizing. Dif-
ferent Optimization methods, such as graphical construction
[42,43], probabilistic techniques [44], iterative approach, dynamic
programming, artificial intelligence (AI), linear programming
[45,46] and multi-objective were implemented by investigators to
optimize hybrid PV/wind energy systems. Table 1 presents a
summary of the optimization methods that were developed by
different researchers.

3.1. Commercially existing software applications for the sizing of
Hybrid Systems

Various existing software applications of Hybrid Energy
s in the US [35].



Table 1
Different optimization methods.

Optimization methods Optimized factors Notice

Artificial Intelligence Hybrid solar-wind
system with battery
bank

Using Evolution approach
a. Genetic Algorithm
b. Particle Swarm
c. Simulated annealing
d. Artificial Neural
Network

e. Hybrid model
Iterative Method Hybrid solar-wind

system
Using LPSP to determine dif-
ferent conditions of solar-
wind combination

a. Hill climbing
b. Dynamic
Programming

c. Linear Programming
d. Multiobjective
Graphical Construction Battery and PV array Usually applied for two

factors
Probabilistic methods Efficiency of hybrid

system
By using statistical method of
data gathering

Deterministic methods Standalone PV with
battery bank

Based on equations applied
for finding particular values
when applying fixed factors

Software based Using an input file with all of
the essential data based on a
software application

a. HOMER

Table 2
Summary of software tools for designing an HES.

Number Software Input Output

1 HOMER ● Load command
● Source input
● element details, such as ca-

pital, maintenance and re-
placement expenses

● System control

● improve unit sizing
● Energy and net cost.
● Small part of renew-

able energy

2 HYBRID2 ● Load demand
● Resources input
● primary investment and

O&M components cost
Components details

● Unit sizing with cost
optimization

● expenses of energy
● Release proportions of

the different green-
house gases

● System payback
periods

3 HYBRIDS ● Solar size
● Turbine type of wind
● number and type of battery

● Cost
● Percentage of green-

house gases
4 RET Screen ● Information loading

● Solar size
● Necessary hydrology and

invention database
● Climate database

● Energy release and
store

● Costs
● Production decreases
● Economic capability
● Risk analysis

5 TRNSYS ● Meteorological data input
● Ingrained models

● Dynamic simulation
of electrical energy
sources

6 IHOGA ● Data loading
● Resources key input data
● Elements and economics

facts

● Multi aim improving
● charge of energy
● Life cycle release
● study for addressing

energy
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Systems (HES) are discussed in this paper. Among them, HOMER
plays a significant role in applications of HES, which involves
quickly searching for the optimal sizing of the energy systems.
Additionally, it is useful to analyze the sensitivity of investigating
the influence of uncertainty or changing factors. A list of this
software for the design of an HES is presented in Table 2.

3.2. Artificial Intelligence Methods in support of Hybrid Energy
Systems Optimization

3.2.1. Genetic Algorithms (GA)
One of the optimization methods operates in terms of the ge-

netic process for biological mechanisms and is called GAs, which
have the ability to present a problem-solving method for difficult
real-world problems [47,48]. Holland first represented the concept
of GAs [49], and afterward, it was widely utilized in many appli-
cations, case studies, and information mining. There many pub-
lished articles that regard GA usage in hybrid systems, for research
on sizing. For example, Yang et al. [50,51] and Bilal et al. [52] make
use of GAs for a PV hybrid wind system, to perform sizing. Kou-
troulis et al. [53,54] used genetic algorithms to find the energy
expenses of the whole system and confirmed that the application
of hybrid PV/wind systems can lead to lower expenses of the
systems in comparison with systems in which the sources of ex-
clusively PV and WG are applied. On the other hand, Lagorse et al.
[55] used GAs in designing a multi-source hybrid source that
combined wind and oil. Examples of PVs are wind, oil, micro-
turbines, and a battery, which had improved sizes according to
Kalantar et al. [56], from their use of Genetic algorithms. Ad-
ditionally, Lopez et al. [57,58] programmed Hybrid Optimizations
based on Genetic Algorithms (HOGA), as a simulation application
to plan compounds of stand-alone hybrid energy systems with
content from renewable sources and typical diesel generators.
Lagorse et al. used a hybrid GA and simplex-based method [59],
and Zhao et al. [60] planned a GA that includes a wind source and
fundamental technical specifications as the main elements. These
were used as input parameters. Additionally, a wind source for the
energy has been established to reduce the production cost and
improve the system's reliability. Additionally, Li et al. [61] im-
proved the rate of gearbox proportioning by using a GA; in so
doing, the power ratings of the multi-hybrid stable wind gen-
erators improved. On the other hand, the wind outline for max-
imizing energy production includes the positions for the wind
turbines on the land [62]. Grady et al. [63] offered a GA to conclude
the optimal generation of wind turbines with the highest pro-
duction capacity while restricting the number of turbines that
were fixed and the area of the land that was filled by each wind
farm. Emami and Noghreh [64] used a new coding approach and a
novel objective function with GAs to solve this problem. Their
method performed better than previous methods that were pro-
posed for the management of the cost, power and effectiveness of
the wind farm. Li et al. [65] used a multi-level GA and could solve
optimal design problems as well as active control algorithms for
the wind. Additionally, Kalogirou [66] solved financial goals in
increasing the system of solar energy by implementing ANNs and
GAs. The ANN method is suitable for making the connection of the
collector region and high container size using the minor power
that is desirable for the system. Then, a GA is applied to calculate
approximately the best size of the factors to lengthen the life-cycle
reserves. Varun [67] used the GA method to increase the thermal
execution of flat laminate solar air warmers by reflecting several
systems and operating factors. Last, the GA approach was used by
Zagrouba et al. [68] to determine the electrical factors. This study
involves photovoltaic solar cells and modules for the determina-
tion of the analogous highest power point.

3.2.2. Particle Swarm Optimization (PSO)
One of the improvement techniques, which involves shifting

and swarm intelligence based on evolutionary calculation techni-
ques, is the PSO. This method was implemented by James Kennedy
and Russell Eberhart in 1995. A component of the swarm is the
system model or social constitution of a basic person to make a
group that has some intention, such as food searching [69,70]. In
comparison with GA-based methods, there is some similarity
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between them. The entry data of the PSO approach includes me-
teorological circumstances, the unit cost of the hybrid components
such as installation and continuation costs, limitations and ap-
propriateness of purpose and the principles of specific PSO factors.
One of the population-based optimization procedures is the PSO-
based sizing methodology process. PSO has a large amount of use
in hybrid sizing research, such as with GAs, and finding literature
examples, such as Gas, is not difficult. Researchers such as Sanchez
et al. [71], Dehghan et al. [72] and Kaviani et al. [73] planned a unit
sizing PSO system to PV (wind and oil) unit microgrids, and a wind
and fuel (oil) cell configuration was recognized by Tafreshi and
Hakimi [74,75]. On the other hand, a wind–PV hybridization and
PSO were planned with Wang and Singh [76] and Zhao et al. [77].
The same study shows that Wang and Singh [78] employed a PSO
in network equivalent hybrid renewable energy systems. For
handling hybrid systems, a multi-criteria approach was proposed
to solve hybrid systems such as wind turbine generators of wind
turbines, photovoltaic panels, and battery problems. These pro-
blems have multiple design objectives, such as costs, consistency
and releases [79]. There were more than 20 varieties in the pro-
posals that used PSO algorithms. Zhao et al. [80] used Hybrid
Particle Swarm Optimization and Wavelet Mutation (HPSOWM)
along with GAs. HPSOWM performs efficiently and fast. The Binary
Particle Swarm optimization (BPSO) algorithmwas also introduced
by Kennedy and Eberhart. This approach enables the use of PSO for
binary problems [80]. Pourmousavi et al. [81] claimed that particle
swarm optimization (PSO) has a very rapid convergence time in
comparison with sequential quadratic programming optimization
in terms of the energy management. Additionally, forecasting the
wind speed is indispensable in wind-related engineering studies
and is important in the management of wind farms. As a technique
that is essential for the future of clean energy systems, reducing
the forecasting errors that are related to the wind speed has al-
ways been an important research subject. In this paper, an opti-
mized hybrid method based on the Autoregressive Integrated
Moving Average (ARIMA) and Kalman filter is proposed to forecast
the daily mean wind speed in western China. This approach em-
ploys Particle Swarm Optimization (PSO) to find the optimum
factors of the ARIMA model, which develops a hybrid model that is
best adapted to the data set, increasing the fitting accuracy and
avoiding over-fitting. Afterward, the suggested method is tested on
the wind farms of western China, where the proposed hybrid
model is shown to perform effectively and steadily [82]. A model
for a wind-CAES system was developed by Kahrobaee and Asgar-
poor [83] to optimize the daily activities and long-term plans of
systems that use the PSO algorithm to maximize their profits. In
addition, particle swarm optimization (PSO) was applied to find
the maximum placement and sizing of PV distributed generation
in radial distribution systems to decrease the power loss. The final
result shows that PSOs can achieve a maximum power loss de-
crease [84]. In another investigation, a novel method is suggested
to find the optimum design of hybrid renewable energy systems
that are composed of different generators and storage devices. The
ε-constraint approach has been used for minimizing simulta-
neously the total cost of the system, the fuel emissions and the
unmet load. A particle swarm optimization (PSO)-simulation
based method has been applied to address the multi-objective
optimization problem. Finally, sensitivity analysis was performed
for investigating the sensibility of different factors to the con-
structed model [85].

3.2.3. Simulated Annealing (SA)
Studies about wind PV batteries and renewable hydrogen hy-

brids used the Simulated Annealing (SA) method on optimization
problems through a simulated annealing process [86]. By the
ability to avoid local minima, it can integrate a possible role for
accepting or rejecting new problem-solving methods. This method
was established by Kirkpatrick, Gelatt, and Vecchi in 1983 [87],
and it has been implemented and expanded since the 1980s′
simple architecture, with effective contributions [88]. The early
heating and cooling processes are important to the SA. The basic
algorithm's criteria are the setting value, deviation, cooling plan,
and acceptance of search execution. Simulated annealing in ARE-
NA 12.0 software was used by Ekren et al. [25] to find the optimum
point of performance of a hybrid system by considering the loss of
the load probability and autonomy analysis on an hourly basis.
According to Sutthibun and Bhasaputra [89], the model that was
used to identify the optimal location and size of the DRG to
minimize the real power loss (PL), production (Epg), and the
possible severity index (SI) that it faced with regard to apower
balance and power generation limitation, used SA as an optimi-
zation tool. Based on Ghadimi and Ghadimi [90] in 2012, SA
minimized the power losses for sizing the DRG and storage banks
in a distributed network. According to Fungetal [91], to obtain the
generator settings and battery charge or discharge schedules in
everyday loads, SA was used in a diesel generator and a sine wave
inverter with a controller element. Katsigiannis et al. compared
SAs with the Tabu algorithm for sizing in an HRES that was used to
minimize the COE. As a result, SA was faster to converge, although
it was less efficient than the other method [92].

3.2.4. Hybrid models
Hybrid approaches are a useful collaboration of two or more

different methods that use the beneficial effects of the methods in
achieving an optimum result for a particular design problem. Be-
cause most of the difficulties that we tackle are multi-objective,
conducting a hybrid method is an excellent objective in nature,
and utilizing a hybrid approach is a suitable alternative method to
address problems that require considerable comprehension of all
of the methods. Meza et al. [93] developed a multi-objective
model to generate expansion planning (MGEP) and an analytical
hierarchy process (AHP) model to address a multi-objective pro-
blem that included costs, environmental effects, fuel price risks
and imported fuel. One solution was achieved by Nasiraghdam and
Jadid [94], by using a multi-objective artificial bee colony (ABC)
algorithm that had considerable quality and good diversity of the
pareto front in comparison with multi-objective PSO (MOPSO)
methods and non-dominated shorting GA-II (NSGA-II). Alsayed
et al. [95] used different multi-criteria decision analysis (MCDA)
optimization techniques to determine the optimum sizing of PV–
WT. Sensitivity analysis of MCDA algorithms was performed by
accounting for different weighting criteria approaches with dif-
ferent types of vacillation scenarios of solar radiation and wind
speed. Although it was complex, beneficial results were provided
that were helpful in the design of hybrid energy systems. An Ar-
tificial Neural Network (ANN) strategy was used by considering
flow batteries to control the uncertainties in the wind outcomes
based on the further lower energy costs. Table 3 shows a brief
summary of additional hybrid methods in more detail.

3.3. Promising method in Hybrid System sizing for future use

3.3.1. Algorithm of ant colony
Finding the direct path of the ants is a developmental routine

that has recently been recognized. The basic Ant Colony algo-
rithms were established on the recital of social creatures that have
the ability to look for the fastest paths to the food sources while
applying famous mater as a pheromone [100]. The pheromones
are the chemical objects that are reserved by the ants to form a
communication media among them. Ant Colony System Algorithm
(ACSA) is the addition of Ant Colony Optimization (ACO). In most
engineering applications, it has better action than the ACO [101–



Table 3
Summary of Hybrid models.

Reference Systems studied Topics covered Highlights

[93] Oil/steam, coal/seam, , hydro,
wind, nuclear

Total costs, CO2 emission, Fuel consumption, Energy
price risk and minimization of outage cost
(reliability)

● The research indicates a multi-objective generation expansion
planning (MGEP) model of a power electric system that involves
renewable energy sources (RES)

● The mixed-integer linear programming (MILP) is implemented
for the suggested optimization. and an effective linearization
approach is suggested to change the non-linear reliability metrics
into a set of linear expressions.

● Fuzzy decision maker is used to choose the most-preferred so-
lution among the Pareto results.

[94] PV, Wind and Fuel cell Power loss minimization, voltage stability index, COE
and emissions

● The results that were achieved by the multi-objective artificial
Bee colony algorithm have a suitable quality and better diversity
of the pareto front compared to the NSGA-II and MOPSO
methods.

[95] PV and wind generator Emissions decrease, estimated expenses and social
acceptance

● This paper includes optimum sizing of PV–WT by using different
multi-criteria decision analysis (MCDA) optimization techniques.

● Sensitivity analysis of the MCDA algorithms has been performed,
in terms of weighting criteria approaches with different fluc-
tuation in the scenarios of wind speed and solar radiation
profiles.

● The proposed approach gives the decision maker the ability to
comprise any type of criteria, enabling a confirmation of the in-
fluence of these criteria on the optimal solutions, by considering
different input data sensitivity scenarios.

[96] Costs, environmental effects,
imported fuel and fuel price risks

Conventional steam units, coal units, combined cycle
modules (CC), nuclear, gas turbines (TG), wind farms,
geothermal and hydro units

● In this study, a multi-objective model for a generation expansion
planning (MGEP) model is proposed. A model is developed to
suggest the nondominated solutions and using the Analytical
Hierarchy Process (AHP) to choose the “best solution” among the
representative (clustered) solutions.

● A large problem is time: access to the main decision makers is
restricted, and it could be expensive. Another problem is that
there is comparatively limited experience with such approaches
in a group setting, in which group members have a variety of
priorities.

[97] PV, Wind, Diesel, Biodiesel and
Battery bank

COE and total greenhouse gas emissions (GHG) ● The large sizes of diesel-fueled generators cause COEs that are
too small and CO2-eq. emissions that are large because enormous
sizes of biodiesel-fueled generators cause a reversal in the out-
comes. Moreover, the use of FC with natural gas as a fuel is not
suggested because of the enormous expense and the high CO2-
eq. emissions that are released.

[98] Wind generator and battery Lowest cost of battery connection with large wind
farm

● The paper shows sizing and control approaches for a zinc–bro-
mine flow battery-based energy storage system.

● The results present that the power flow control strategy does
have an important effect on the proper sizing of the rated power
and energy of the system. Specifically, ANN control strategies
lead to less expended energy in the storage systems than sim-
plified controllers.

[99] PV, Wind and Battery Installation expenses and productivity ● This paper assesses the productivity of a hybrid system that in-
cludes combinations of renewable energy generation and energy
storage to satisfy a controllable HVAC load
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104]. Wang et al. improved an optimization process based on ACSA
in 2008 by reducing a compound consistency index to determine
the best rec-loser and DRG locations. The authors recommended
the idea to extend the simultaneous locations of both re-closers
and DRGs, which are together dependent on the reliability en-
hancement [105]. Additionally, Sookananta et al. [106] planned
ACSA to find the best location and sizing of the DRG in radial
distribution systems, to decrease the general line losses of the net.
Other research, such as in Fetanat and Khorasaninejad [107] used
ant colony optimization applied to constant domains (ACOR) based
digital programming for size optimization in a hybrid photovoltaic
(PV)–wind energy system. ACOR is an easy extension of ant colony
optimization (ACO). Additionally, it is the notable ant-based algo-
rithm for perpetual optimization. In this setting, the variables are
first considered to be real and are then rounded in each step of the
iteration. The number of solar panels, wind turbines and batteries
are selected as decision variables of the integer programming
problem. The main goal of the design of a PV–wind system is the
total design cost, which is the sum of the total capital cost and the
total maintenance cost; this sum should be minimized. The opti-
mization is separately performed for three renewable energy
systems, including hybrid systems, solar stand alone and wind
stand alone. A complete data set, a regular optimization formula-
tion and ACOR-based integer programming are the main features
of this paper. The optimization results showed that this method
gives the best results in only a few seconds. Additionally, the re-
sults are compared with other artificial intelligence (AI) ap-
proaches and a conventional optimization method. Moreover, the
results are very promising and prove that the authors’ proposed
approach outperforms them in terms of reaching an optimal so-
lution and speed [108].

3.3.2. Algorithm of the Artificial Immune System (AIS)
AISs are motivated by immunology, the role of the immune

system and the values viewed in the natural world [109], which
was presented in the 1990s. In addition, the immune system is a
vital defense against self-approach that protects human health
from enemies or pathogens such as microbes and viruses. This



Table 4
Brief summary of Artificial Intelligence Methods for Hybrid Energy Systems.

Reference Systems studied Topics covered Highlights

Solar and Wind Systems
[113] Only standalone PV–wind hybrid systems ● Criteria for optimizations and simulation modeling of

photovoltaic systems, wind energy systems, battery
storage systems

● Software tools for hybrid solar–wind system reviewed
are

● HOMER
● HYBRID2
● HOGA

● Artificial intelligence techniques are identified to be
promising. which require further exploration

[114] Study covers PV–battery, PV–wind–battery
and PV–wind–diesel–battery hybrid
systems

● Optimization Techniques reviewed:
● Genetic Algorithms
● Honey Bee mating Optimization
● Particle Swarm Optimization
● Evolutionary Algorithm
● Artificial Intelligence
● Pareto-based multi-objective optimization and par-

allel processing

● GA and PSO as the most useful and promising multi-
objective optimization methods in hybrid system
design

[115] Study includes standalone and grid-con-
nected PV systems, PV–diesel generator
systems, PV–wind systems, PV–wind–die-
sel generator systems

● Standalone PV systems size optimization methods
reviewed are:

● Intuitive methods
● Numerical methods
● Analytical methods
● Other methods(Artificial Intelligence)
● Reviewed grid connected hybrid systems sizing opti-

mization methods:
● Intuitive methods
● Numerical methods
● Artificial intelligence methods

● Artificial intelligence techniques have the potential
to improve the process of optimization

All Types of Hybrid Energy Systems
[116] Covers all types of renewable energy-

based hybrid systems
● Software tools discussed are: HOMER, HYBRID2,

(ORIENTE). (GAMS). The OptQuest, LINDO, WDILOG2,
Dividing Rectangles (DIRECT). (SimPhoSys), (DOIRES).
(GRHYSO), H2RES and The Geo- Spatial Planner for
Energy Investment Strategies.

● Optimization techniques discussed are:
● Genetic algorithm
● Particle swarm optimization
● Simulated annealing
● Linear programming
● Simplex algorithm
● Neural Networks
● Evolutionary algorithm
● Random, repeatable, probabilistic, parametric and

numerical way.

● Promising techniques identified are: Ant colony al-
gorithm, Artificial immune system algorithm, Tabu
Search, Honey Bee Algorithm, Bacterial Algorithm,
Game Theory

[117] Study includes all types of renewable en-
ergy-based hybrid systems

● Reviewed hybrid system performance indicators (Loss
of power supply probability (LPSP), Levelized cost of
energy (LCE))

● Hybrid energy system sizing methodologies reviewed
are:

● Probabilistic methods,
● Iterative methods,
● Hybrid methods (Genetic Algorithm, Artificial

Intelligence)
● Analytical methods including software or numerical

approximations of component

● Study suggests that hybrid optimization methodol-
ogies are superior to other methods.

[118] Covers all types of renewable energy-
based hybrid systems

● Discussed design parameters, evaluation criteria and
control and energy management of hybrid energy
systems _ Software tools reviewed are

● HOMER
● HOGA
● RETScreen
● HYBRIDS
● TRNSYS
● Sizing methodologies reviewed are:
● Graphic construction methods
● Probabilistic methods
● Analytical methods
● Iterative methods
● Artificial intelligence methods
● Hybrid methods

● Hybrid optimization methodologies are re-
commended for hybrid systems research to avoid
the limitations of one methodology
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procedure will be able to differentiate among self-cells and non-
self-cells. Afterward, the immune system executes an immune
answer to remove the non-self-cells [110–112]. Based on the AIS
optimization process for hybrid system sizing, the explanations in
the search area could be used as encryption in an antigen popu-
lation in the AIS algorithm. During each iteration, the structure of
the antigen populace that was adopted and the peoples’ perfor-
mance through the eradication of impossible solutions were
evaluated. Previous antigens, including affinities, were supplanted
by new antigens that were beneficial to the collection affinities. A
summary of an artificial intelligence application that considers the
energy produced based on solar, wind and all types of hybrid
energy systems is shown in Table 4.

3.4. Other promising approaches

Many methods can be used as conceptual methods in the fu-
ture for improving the proficiency and cost-effectiveness in sizing
hybrid energy systems. The most utilized methods in applications
are the Tabu Search [119,120], honey bee mating algorithm
[121,122], bacterial food algorithm [123,124], game playing theory
[125,126] and combination of metaheuristic algorithms. In this
section, the combination of different methods with artificial in-
telligence approaches are reviewed based on their energy pro-
duction, which is produced from, e.g., wind, solar and other hybrid
and renewable systems.

3.4.1. Wind systems
Detailed predictions of the wind speed and power are essential

for improving the safety of renewable energy utilization. Com-
paring this goal with physical techniques showed that statistical
procedures are usually simpler and produce better fits for small
amounts of land. Determined by the designs of wavelets and es-
tablished time series analysis, a new short-term forecasting ap-
proach is proposed. Simulation of real-time data shows that
(1) the relative mean deviation in many-step predictions is related
to the proposed method by a minute. However, this finding is
better than standard time series methodology as well as BP
methodology. (2) The suggested method is strong in skipping data.
(3) The proposed method applies to both the wind speed and
power prediction [127]. Pousinho et al. [128] proposed a stochastic
programming method to trade wind energy in a market context
under ambiguity. The main reason for the profits obtained by the
power producers is the energy market values. The unpredictable
nature of wind power shows an additional source of uncertainty.

The wind speed series show uncertain and nonlinear events.
The essential and safe use of renewable energy utilization depends
on the accurate forecasting of the wind speed. Hybrid models al-
ways have tremendous accuracy. According to the theories of
Wavelets, particle swarm optimization, artificial neural networks,
and genetic algorithms, two hybrid predicting frameworks “(GA)
and (PSO)” are suggested to predict the non-fixed wind rates.
Comparisons of the forecasting performance using several algo-
rithm combinations showed that the various components in these
two hybrid frameworks involved the following:

i. Two proposed hybrid predicting structures involve a proper
variety of precision supplied in wind speed calculations, which
can also apply to wind power sources.

ii. The augmentation of the GA, as well as the PSO components, is
not notable, whereas the Wavelet component is important
[129].

The approach of wind speed forecasting plays a leading role in
providing the safety of wind power performance. In this paper,
four different hybrid methods are proposed for high-precision
multi-step wind speed forecasting in terms of the Adaboost
(Adaptive Boosting) algorithm and the MLP (Multilayer Percep-
tron) neural networks. In the hybrid Adaboost–MLP forecasting
architecture, four important algorithms are adopted for the
training and modeling of MLP neural networks, including the GD-
ALR-BP algorithm, GDM-ALR-BP algorithm, CG-BP-FR algorithm
and BFGS algorithm. This research aims at investigating the pro-
moted prediction percentages of MLP neural networks by Ada-
boost algorithm optimization under various training algorithms.
The hybrid models in the performance comparison include Ada-
boost– GD-ALR-BP–MLP, Adaboost–GDM-ALR-BP–MLP, Adaboost–
CG-BP-FR–MLP, Adaboost–BFGS–MLP, GD-ALR-BP–MLP, GDM-ALR-
BP–MLP, CG-BP-FR–MLP and BFGS–MLP. Two experimental results
showed the following: (1) the proposed hybrid Adaboost–MLP
forecasting architecture is effective for wind speed forecasting;
(2) the Adaboost algorithm has promoted the prediction perfor-
mance of the MLP neural networks considerably; (3) among the
proposed Adaboost–MLP forecasting models, the Adaboost–CG-BP-
FR–MLP model has the highest performance; and (4) the improved
percentages of the MLP neural networks by the Adaboost algo-
rithm decreased step by step with the following sequence of
training algorithms: GD-ALR-BP, GDM-ALR-BP, CG-BP-FR and BFGS
[130]. Zhang et al. [131] recommends a hybrid computational de-
sign in terms of Sequential Quadratic Programming (SQP) and
PSOs, to approach the Combined Unit Commitment and Emission
(CUCE) intricacy. Developing a model that comprises both thermal
dynamos and wind farms, the suggested hybrid computational
design manages the scheduling and greenhouse gasses emissions
expenses, and it used a set of mathematical models. The final re-
sults cited that the proposed hybrid method is better based on the
speed and accuracy. The main contribution of this method is the
construction of an emissions unit commitment model that is
combined with wind energy and connects the SQP and PSO
methods to obtain rapid and higher performance optimization
[131].

3.4.2. Solar systems
Various optimization methods have been recommended to

identify the parameters of solar cells. Nevertheless, most of them
obtain sub-optimal solutions due to their precipitate convergence
and their difficulty in overcoming local minima in multi-modal
problems. Oliva et al. [132] proposed the use of the ABC (Artificial
Bee Colony) algorithm to identify the solar cells' parameters ac-
curately. The ABC algorithm is an evolutionary technique that is
inspired by the intelligent foraging habits of honey bees. Com-
paring this technique with other evolutionary algorithms, ABC
manifests a better search capacity to face the multi-modal objec-
tive functions. To illustrate the proficiency of the intended ap-
proach, it is compared to other well-known optimization methods.
The experimental results demonstrate the high performance of the
proposed method in terms of the robustness and accuracy [132].
The measurement of the PVT properties of natural gas in gas pi-
pelines, gas storage systems, and gas reservoirs requires accurate
values of the compressibility factor. Although the equation of state
and empirical correlations were utilized to estimate compressi-
bility factor, the demands for novel, more reliable, and easy-to-use
models encouraged the researchers to introduce modern tools
such as artificial intelligence systems. This paper introduces PSO
and GA as population-based stochastic search algorithms to opti-
mize the weights and biases of the networks and to prevent
trapping in local minima. Hence, in this paper, GA and PSO were
used to minimize the neural network error function [133].

An absolute mathematical paradigm is a useful tool for simu-
lation, estimation, and management as well as the optimization of
solar cell operations. This approach is useful because of the non-
linearity of the solar cell models and the limitations of traditional



S.M. Zahraee et al. / Renewable and Sustainable Energy Reviews 66 (2016) 617–630 625
optimization methods in the identification of unknown factors.
Simulated Bee Swarm Optimization (ABSO) is a newly proposed
algorithm that is encouraged by the intelligent characteristics of
honey bees. In this paper, the proposed ABSO-based parameter
identification procedure is described in terms of diode models that
are composed of a single and double models for a 57-mm diameter
commercial (R.T.C.) silicon solar cell. The final results showed that
they are quite favorable and outperform those that are conducted
by the other research methods [134].

3.4.3. Other Hybrid systems
Recently, it has become obvious from studies that hypotheses

based on Knowledge-based professional systems have become
important instruments for scientists and engineers. Today, it is not
easy to arrive at solutions by previous methods because there are
many attractive features that lead to addressing real and difficult
engineering problems. Furthermore, by the growing worldwide
demand for various types of energy, highly developed intelligent
forecasting techniques are necessary to establish the basics of
making decisions. Thus, in this study, a new approach was pre-
sented to create professional systems to simulate various types of
energy requests with related factors and pressures. The capability
of this method is evaluated by implementing it in three case stu-
dies, namely, annual electricity demands, natural gas demands and
oil products required in Iran. The results from this method (COR-
ACO-GA) provide more accurate and stable calculations than for
neuro fuzzy systems (ANFISs). Additionally, it can support decision
makers in appropriate arrangements for a future (subsequent)
period [135]. In one investigation, a multi-agent solution (MAS) to
energy management in a distributed hybrid renewable energy
system was presented. This system has constituents, character-
istics, and excitation devices. The validation of the MAS showed its
feasibility in achieving all of the system requirements. Therefore,
five varieties of agents are offered, which for each agency is built
in a three-layered architecture. A macro MAS is also shown in
detail. Its framework contains an overall optimization function
such as JADE (Java Agent Development). As a result, studies
showed MAS to be a suitable solution for the energy management
of the distributed hybrid renewable energy system [136]. To en-
hance the amount of efficiency for future projections in China, this
study used a hybrid algorithm and PSO along with GA for a top
Energy Demand Estimating (PSO–GA EDE) model. The parameters
of the three types of approaches in the model (linear, exponential,
and quadratic) was optimized by PSO–GA, while applying de-
terminants, such as GDP, economic structure, population, rate of
urbanization, and energy consumption structure, which influence
the demand. The simulation outcomes of the suggested model
have increased correctness and reliability compared to other single
optimization approaches over 20 years. [137].

Another optimization approach used the ANFIS (Adaptive
Neuro-Fuzzy Inference System) to illustrate the PV and wind ori-
gins. The algorithm developed is related to “HOMER (Hybrid Op-
timization Model for Electric Renewables)” with HOGA (Hybrid
Optimization by Genetic Algorithms) software, and the final re-
sults demonstrate a precision of 96% for wind and PV. PSCAD/
EMTDC was used to simulate the optimized operation, and the
results claimed that a small amount of excess energy is released
[108]. In another study, ABSO was used by modeling all of the
segments and describing an objective function that was based on
the total annual cost. Thus, the maximum acceptable loss in the
power supply probability (LPSPmax) is determined for a reliable
system. This approach used conditional rules to find the global
solution. As a result, LPSPmax was set to 0%, 0.3% and 1%, and the
PV/WT/FC is a highly cost-effective energy system, and thus, at
LPSPmax 2%, the WT/FC is the most cost-effective hybrid system
[138]. A model using an ANN has been recommended to assess
hybrid system behavior. It is associated with wind speed and solar
radiation, battery storage life span, and fuel costs. The Hybrid In-
telligent Algorithm proposed a combination of analysis of a Monte
Carlo simulation method and ANN training in a GA optimization
model. It was applied to define input and output data sets that
were chosen from 519 tasters, which were later utilized to train
the ANNs and decrease the effort that was needed. The general-
ization power of the ANNs was calculated based on the RMSE
(Root Mean Square Error), MBE (Mean Bias Error), MAE (Mean
Absolute Error) and R-squared estimators while applying another
200 samples. The conclusions showed that the accessible model
can symbolize the main characteristics of a hybrid power in non-
reliable operating situations [139].

Berrazouane and Mohammedi [140] presented the develop-
ment of an optimized fuzzy logic controller (FLC) for operating a
standalone hybrid power system, which was based on the cuckoo
search algorithm. The FLC inputs are the batteries’ state of charge
(SOC) and net power flow, and the FLC outputs are the power rates
of the batteries, photovoltaic and diesel generator. Data for weekly
solar irradiation, ambient temperature and load profile are used to
tune the proposed controller by using the cuckoo search algo-
rithm. The optimized FLC is able to minimize the loss of power
supply probability (LPSP), excess energy (EE) and levelized energy
cost (LEC). Moreover, the results of the CS optimization are better
than those of particle swarm optimization PSO for a fuzzy system
controller [140]. The tradeoff between the expense and reliability
of the method is a major bargain in devising hybrid methods. Thus,
the Optimization of a Hybrid Micro-Grid System (HMGS) is ex-
amined. A hybrid wind/PV system with battery storage and a
diesel generator is used for this purpose, and the Multi-Objective
Particle Swarm Optimization (MOPSO) technique is used to find
the reliable configuration of the system. Data from a set of wind
speeds from three meteorological stations was gathered on an
hourly basis in Iran. These selected stations (Nahavand, Rafsanjan,
and Khash) were examined for HMGS optimizations. However, the
designs of the systems mentioned above and the results agree in
that the MOPSO optimization model produces components of
appropriate sizes at each location. It is also argued that the use of
HMGS can be considered to be a real option for promoting elec-
trification projects and improving energy access within isolated
Iranian areas or other developing nations that experience the same
or similar climatic situations [141]. Leou [142] used genetic algo-
rithms combined with linear programming (GALP) to find the
optimum capacity and working performance of a VRB energy
storage system. He considered the operations and maintenance
costs, installation expenses and incomes as comprising the energy
price for decreasing transmission access expenses and delaying
facility investment. Tan et al. [143] used PSO along with a grav-
itational search algorithm (GSA) to develop a novel optimization
model for the siting and sizing of DGs based on real power losses
and the grid VA requirement. The final results showed that the
proposed approach is effective, robust and proficient for addres-
sing the mixed integer nonlinear optimization problem. Another
study proposed a new self-adaptive optimization algorithm based
on the θ-Particle Swarm Optimization (θ-PSO) algorithm to find
the whole search space globally. In this paper, a novel probabilistic
design based on a 2 m Point Estimate Method (2 m PEM) was
suggested for considering the uncertainties in the optimum energy
management of MicroGrids (MGs) that involve a variety of re-
newable power sources such as Micro Turbine (MT), Photovoltaics
(PVs), storage devices and Wind Turbines (WTs) [144]. Battery
storage and Standalone microgrids with renewable sources play a
significant role in handling power supply problems in remote
areas such as islands. The lifetime parameter of a battery energy
storage system must be fully studied to obtain economic and re-
liable performance of a standalone microgrid as well as to consider



Table 5
Summary of combined different artificial methods.

Reference Systems studied Topics covered Highlights

Wind Systems
[127] wind speed and wind power forecasting ● statistical methods ● error is small, which is better than in classical time series

methodology;
● robust in addressing jumping data;
● applicable to both wind speed and wind power forecasting

[128] trading wind energy in a market en-
vironment under uncertainty

● stochastic programming approach ● comparison of optima in the market at different risk levels.
● proposed method on a realistic case study

[129] predict non-stationary wind speeds ● traditional time series examination,
● GA
● (PSO) and artificial neural networks,
● two hybrid forecasting frameworks [(GA)-(PSO)]

● both of them are suitable for different accurateness re-
quirements in wind speed forecasting.

● the GA and the PSO components in improving the MLP are
not significant, whereas the Wavelet component is
significant

[130] wind speed prediction ● MLP neural networks, including
● GD-ALR-BP algorithm
● GDM-ALR-BP algorithm
● CG-BP-FR algorithm
● BFGS algorithm

● Adaboost–the MLP forecasting architecture is effective for
wind speed predictions

● the Adaboost algorithm has promoted the forecasting
performance of the MLP neural networks considerably;

● the Adaboost–CG-BP-FR–MLP model has the best
performance

● Adaboost algorithm decreases step by step with the se-
quence of training algorithms

[131] minimize the scheduling cost and green-
house gases emissions cost

● Sequential Quadratic Programming (SQP) and
Particle Swarm Optimization (PSO)

● Implementation of a release unit model with wind energy
when combining the SQP and PSO

Solar Systems
[132] accurately identify the solar cells'

parameters
● ABC (artificial bee colony) algorithm ● high performance of the proposed method in terms of

robustness and accuracy
[133] solar cell systems ● Particle swarm optimization (PSO)

● Genetic algorithm (GA)
● Helpful tool for simulation, estimation, management, and

optimization of solar cells.
● meta heuristic algorithms have attracted significant

attention
[134] diameter commercial (R.T.C. France) sili-

con solar cell
● Artificial bee swarm optimization (ABSO) ● The results found by the other studied methods

Other Types of Hybrid Systems
[135] construct expert systems by ability in

modeling and imitation of energy
commands

● supportive (COR-ACO-GA) ● to signify that COR ACO GA
● adaptive (ANFISs)
● (ANNs)

[136] energy management in a distributed hy-
brid renewable energy

● multi-agent (MAS) solution ● suitable solution for energy management of a distributed
hybrid renewable energy generation system

[137] optimal Energy Demand Estimating (PSO–
GA EDE) model, for China

● Particle Swarm Optimization
● and Genetic Algorithm

● proposed model has greater accuracy and reliability than
other single optimization methods

[138] Optimally size a hybrid energy system ● Artificial bee swarm optimization (ABSO) ● stochastic rules to escape local optima and find a global
solution

[139] wind and solar, battery life span, and fuel
prices

● ANN (artificial neural network)
● Monte Carlo simulation approach
● genetic algorithm optimization model

● it can represent the main uniqueness of a typical hybrid
power system under doubtful operating conditions

[140] operating a standalone hybrid power
system

● optimized fuzzy logic controller (FLC)
● cuckoo search algorithm

● results of CS optimization are better than those of particle
swarm optimization (PSO) for a fuzzy system controller

[141] Hybrid Micro-Grid System (HMGS) ● Multi-Objective Particle Swarm Optimization
(MOPSO)

● MOPSO optimization model produces suitable sizing of the
elements for each place

[144] renewable power sources ● 2 m Point Estimate Method (2 mPEM) with a
self-adaptive modification PSO method (SAM-θ-
PSO)

● A novel self-adaptive modification approach based on the
θ-PSO algorithm was proposed.

● Several renewable sources such as PV, WT, FC and MT as
well as storage devices are considered.

● θ-PSO algorithm is used for the first time to solve MG
operations management.

[145] standalone microgrid ● a multi-objective optimization and non-domi-
nated sorting genetic algorithm (NSGA-II)

● Minimize the power generation cost and maximize the life
of the lead–acid batteries
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the rate of renewable resource utilization. In this research, a
standalone microgrid on Dongfushan Island in China was selected
as a case study to investigate its economic operation. To achieve
this goal, an optimization model composed of operations and
maintenance expenses, battery life losses and environmental costs
was proposed to find a set of optimum factors of operations
strategies. Therefore, a multi-objective optimization and non-
dominated sorting genetic algorithm (NSGA-II) was combined to
minimize the power generation expenses as well as to maximize
the applicable life of the batteries. The final results showed that
the suggested approach can optimize the system operation by
considering a variety of scenarios, and it can aid users in achieving
the optimum operation design of the actual microgrid system
[145]. Table 5 indicates a summary of other combined artificial
intelligence methods to optimize the hybrid energy systems.
4. Results and discussion

The increase in global energy requirements and the environ-
mental issues that are based on fossil energy performance have
encouraged the broad, extensive study of the use of renewable
energy techniques instead of traditional fossil fuels. Specifically,
hybrid systems, which are described as a combination of renew-
able and back-up parts or traditional energy sources, play a sig-
nificant role in finding suitable solutions for handling the chal-
lenges that the world confronts today with regard to the sustain-
ability concerns of energy demands and environmental safety.
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Hybrid energy systems can be designed and optimized to satisfy
the essential requirements of an area based on different factors,
such as topography, energy availability of potential resources and
types of energy demands. Therefore, the best sizing of the re-
newable energy sources, which relates to hybrid systems, con-
siderably enhances the economic and industrial aspects of the
supplied power performance, such as encouraging the use of such
environmentally friendly sources. Several sizing methods are used
to find the best hybrid renewable energy system in terms of
technology and economy. Finding the optimum design of hybrid
renewable energy systems can be important in increasing the
economic and technical efficiency of the power supply and in
encouraging the extensive use of environmental resources.

Different sizing methodologies in existing software with dis-
similar optimization methods are tested here. Thus, every sizing
procedure has its attributes, and many new approaches are pos-
sible for upcoming usage. Additionally, by the selection of the
appropriate method, the types of tools and the users’ needs could
change. As a result, every developed sizing method has the po-
tential to substantially improve renewable energy systems and,
thus, has an enormous significance in the renewable energy area.
The ease of leaving out a local minimum and the well-organized
capability of finding the universal optimal is the most significant
benefit of GAs when using hybrid system sizing. This advantage of
code-ability makes it appropriate in sizing studies because this
advantage is not accessible in other methods such as PSO, which
will be described below. For example, the application of GA and
PSO can be encoded into three parameters at most (calculated in
the next section), which includes more than three elements, such
as in the PV wind fuel cell. Moreover, the GA method does not
require non-original data. Nevertheless, the GA is difficult to code
because of its complex structure. Furthermore, if the number of
parameters is larger, the GA would be more difficult, and there
would be an increase in the response time of the GA. The PSO has
some benefits over GA, even though both the GA and PSO method
have brilliant effectiveness in using the same repeatable searching
approach. This method is very easy to implement in any optimi-
zation software and is very fast. However, if there are more than
three elements, it would be more capable when utilizing the GA
approach.

This method is a simple perception that involves an easy im-
plementation in a software environment. Consequently, the cal-
culation time is short, and the requirement for recollection is low.
However, the reliability of finding the global optimum in a search
area is lower than with a GA-based method. Additionally, the PSO
approach is less appropriate than the GA in problems that include
a coordinate description of particle bases, which have more than
three PSO parameters, and it can only be identified on the x, y, z
plane. For example, when considering a PV wind fuel cell hybrid
system in which the size is optimized, the x-axis is used to re-
present the PV panels’ numbers. The y-axis is the number of wind
turbines, and the z-axis is based on the fuel cell system in the KW.
As a result, the three components in using the PSO, which is more
capable than the GA, are explained below. However, as mentioned
before, if there are more than three available components, then it
is more suitable to use the GA method as a replacement for the
PSO. In addition, using SA in a hybrid system sizing is not as
prevalent as methods such as the GA or PSO, but currently, re-
search interest in SA is increasing, and the approved area of use is
growing. The ACS algorithm has been proposed to reduce the
distribution of system losses and to balance the factors of radial
distribution. Additionally, it has proven to be better than the GA by
achieving 44.626% as an average loss reduction. Similar to the GA,
the AIS's fundamental optimization has “collection” and “transfor-
mation” operatives, which can considerably improve the chance of
the algorithm finding the most globally advantageous point.
AIS has a higher potential to be used in sizing studies based on
its likeness to the GA and a possible effective route to finding the
comprehensive optimum in difficult problems. However, the GA
applicability is greater than the AIS in its ability to address a large
number of parameters. Most of the time, hybrid optimization
methods have been proposed to combine two or more meth-
odologies to improve them, to increase their convergence time in
the optimization process. These methods can be characterized
because of their flexibility and dynamics during the sizing process.
Therefore, they are the most dominant sizing methodologies.
5. Conclusions

This study presents a summary of prior research concerning the
use of optimization in artificially intelligent algorithms for de-
signing, planning and controlling problems in the field of hybrid
energy systems. There were over one hundred papers reviewed
from the major and popular referenced journals in the areas of
renewable energy and computational optimization that offer im-
portant and useful conclusions for renewable energy research.
Optimization studies during the past 2.5 decades by researchers
using traditional and new generation methods are analyzed, and
optimization methods, including hybrid algorithms, are presented.
Artificial intelligence algorithms are mostly used during the past
decade because they utilize less computational time and have
better accuracy, with good convergence in comparison to tradi-
tional methods. In conclusion, this study shows, in the beginning,
the number of investigations that use optimization methods in
solving renewable energy problems, mainly for wind and solar
energy systems. There are many research papers that use heuristic
optimization methods, especially GAs and PSOs, to address these
problems. However, there are some optimization techniques that
involve traditional methods, such as mixed-integer and interval
linear-programming, Lagrangian relaxation, quadratic program-
ming, and Nelder–Mead Simplex search. Future research could
pave the way for hybridization and multi-objective implementa-
tions of bio-inspired solutions. Attempts to exploit the advantages
and disadvantages of different algorithms have been made by
implementing hybrid algorithms. These approaches have been
proven to be faster, more accurate and more powerful than in-
dividual systems. The choice of algorithm to be implemented de-
pends solely on the application, and hence, a thorough under-
standing is needed to justify the merits and demerits. For example,
high dimensional problems such as sizing can be addressed better
by using PSO rather than GAs. Artificial intelligence techniques are
also applied with optimization algorithms in some power system
applications. This review will be useful for researchers, to address
the complexity and challenges in renewable energy-based hybrid
systems research.
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