Tournal of Applied Sciences 14 (7): 651-659, 2014
ISSN 1812-53654 / DOL 10.3923/jas.2014.651.659
© 2014 Asian Network for Scientific Information

Non-stationary 1D Thin Bed Model for Non-stationary Frequency
Bandwidth Expansion Algorithms

M. Sajid, D.P. Ghosh and M. Shahzad
Department of GeoScience and Petroleum Engineering,
Universiti Teknologi PETRONAS (UTP), Malaysia

Abstract: Seismic resolution has always been a quest of a geophysicist to obtain detailed structural and
stratigraphic information from the seismic data. New algorithm developed for frequency bandwidth expansion
are usually tested on stationary thin bed models before their implementation on real seismic data. These models
are created by using the Ricker or Rayleigh criterion. But seismic wavelet is non-stationary, which changes its
shape, amplitude and frequency contents as the wave propagates subsurface. A new technique 1s presented
in this paper to create non-stationary thin bed model where the frequency bandwidth of the seismic wavelet
decreases smoothly. The study describes the comprehensive mathematical formulation of new technique and
testing of new bandwidth expansion algorithms like Differential Resolution and Short Time Fourier Transform
Half Cepstrum for their effectiveness for non-stationary and stationary thin bed models.

Key words: Seismic, algorithm, non-stationary, thin bed model

INTRODUCTION

Seismic resolution has always been a quest of a
geophysicist to obtan maximum structural and
stratigraphic  information of the subswface. This
resolution leads to better geological interpretation,
reserve estimation and precise decisions. Up to this end
number of seismic resolution algorithms are presented in
literature and these algorithms are tested on synthetic
seismic data before to implement on real seismic data set.
This synthetic seismic data provide the controlled
environment which simulates the real data problems.

Synthetic 1 D thin bed model contains the Ricker
(1953) and Rayleigh criteria (Kallweit and Wood, 1982)
to define the resolution limit of the seismic wavelet.
Figure 1 show the analysis of zero phase Ricker wavelet
with the predominant frequency of 35 Hz. Rayleigh
criteria (Tuning thickness) define the resclution limit as
the half the distance between the two minima of the side
lobe of the sewismic wavelet, 1.e., b/2. Whereas Ricker
criteria (Flat spot thickness) define the resolution limit as
half the distance between two inflection pomts of the
wavelet.

Tuning thickness (Rayleigh Criterion) of this
wavelet is 12 msec whereas resolution limit (Ricker
Criterion) lies at 10 msec. Below the resolution limit, the
two consecutive seismic events are merged with each
other and 1t becomes difficult to separate them as two
separate interfaces. Ricker developed this property and
applied on model of two spikes with the same polarity,

whereas videos (Widess, 1973) devoted his studies to two
equal but opposite polarity spikes. Kallweit and Wood
(1982) did a very mice comperative study of
Rayleigh, Ricker (1953) and Widess (1973) defimtions of
seismic wavelet resolution and give nice equations for
estimation of temporal resolution of the seismic wavelet.
Ricker criterion can be obtained by using Eq. (1) where as
the Rayleigh criteria can be obtained by using the Eq. 2
here £, 1s the predominent frequency which can be
obtained from reciprocating the wavelet width b:

T (1)
3Ixf

b__ 1 (2)

2 26xf,,

{1 18 predominant frequency

Another equation proposed by Chung and Lawton
(1995) for tumng thickness estimation 1s shown in Eq. (3).
Through this equation, Ricker wavelet with the dominant
frequency of 35 Hz, will have tumng thickness of 11 msec.
This 11 msec tuning thickness means that this s the
minimum time separation between two comnnective
events in time domain, below this, the event response
interference starts to dominate and events become
visually inseparable. In other words, if layer velocity 1s
2700 m sec”' than its top and bottom interface is
non-separable if the bed thickness is less than 15m.

Corresponding Author: M. Sajid, Department of GeoScience and Petroleum Engineering, Universiti Teknologi PETRONAS (UTP),

Malaysia



J. Applied Sci., 14 (7): 631-659, 2014

1.59
Inflection

1.0 points

0.5 3

0.0 "\ L ‘ : ‘\/’
20.5- Zer’(')-crosslmg

p‘omt:s Tuning thickness = b/2
-1.04
—>b—»
-1.5 T T T T T T T T T
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

Fig. 1: Analysis of zero phase wavelet for its resolution, tuming thickness is half the distance between two consecutive
minimum points of wavelet side lob (b/2) whereas flat spot thickness is the half the distance between the wavelet
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Fig. 2(a-b): (a) Reflectivity series where the distance between two consecutive events increases from left to right and
{(b) 1D synthetic seismic created from reflectivity series shows the resolution limit of the Ricker wavelet
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Figure 2 shows the thin bed reflectivity model and its
corresponding synthetic seismic trace, which 1s obtained
by its convolution with Ricker wavelet. Tt presents the 1D
thin bed model that contains six scenarios of events
interference of same polarity when the distance between
two events is:

Single event wavelet (f,,=35 Hz and tuning
thickness = 12 msec)

Two events are in between O to flat spot thickness
(3 samples or 6 msec thickness)

Two events are below flat spot thickness (4 samples or
8 msec thickness)
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Flat spot thickness (5 samples or 10 msec thickness)
(Ricker criterion (Ricker, 1953))

Tuning thickness (6 samples or 12 msec thickness)
(Rayleigh Criterion (Kallweit and Wood, 1982))
Greater than Tuning thickness (7 samples or 14 msec
thickness)

This thin bed model is good enough to test the
capability of the algorithms for events resolution but to
verify the robustness of the algorithm for its handling of
frequency bandwidth change with time, a non-stationary
thin bed model is required Normally non-stationary
seismic resolution algorithms are tested on seismic trace
by slicing the signal into small umits where the seismic
wavelet 13 considered to be slice wise stationary
(Welch, 1967, Van der Baan, 2008, Van der Baan ef al.,
2010; Herrera and Van der Baan, 2012).
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A new algorithm is presented in this paper to
create a non-stationary thin bed model where the
frequency bandwidth of the wavelet is reduced
progressively without slicing or discontinuity of the
synthetic trace. The algorithm uses Spectrogram
created through Short Time Fourier Transform (STFT)
with the spectral decomposition window length
greater than the expected wavelet length so that it
can cover the most of the frequency bandwidth of
the seismic wavelet. Non-stationary Gaussian window
filtering in spectrogram domain, smoothly band limit the
frequency spectrum at each translation. Reconstruction
from this non-stationary Gaussian window filtered
spectrogram, leads to non-stationary thin bed synthetic
model.

METHODOLOGY

Both vertical and horizontal resolution of the seismic
data is limited. This imposes limits on the geological
features that can be reorganized on seismic data. Vertical
resolution is recognized by the input seismic wavelet and
the filtering effect of the Earth as the wave propagates in
the sub-surface. Resolution of seismic data depends on a
number of factors as shown in Fig. 3, among them
frequency bandwidth plays important role. Tmpulsive
source like dynamite, air gun etc. produces large
frequency bandwidth as shown in Fig. 4, whereas this
frequency bandwidth decrease as the wave propagate in
subsurface.

This difference in frequency bandwidth leads to
deficiency of information in seismic wavelet. A typical
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seismic source wavelet in marine acquisition (air gun)
contains the frequency bandwidth in the range 10 to
150 Hz. The upper himit of this frequency bandwidth
decrease as wave propagate mn earth and perhaps reaches
to 50Hz in TWT of 2 sec.

Fourier analysis is well known tool to decompose a
signal orthogonal components of sine and
cosine waves, Eq. 4. It transforms the signal from the time
domain to the frequency domain. Amplitude and phase

mto  its

spectrum obtained through Fourier analysis is the
solution of a stationary signal where the bandwidth
of the signal doesn’t change. The seismic wavelet 1s
non-stationary which changes its shape and frequency
contents as it propagates in the subsurface. Short Time
Founer Transform (STFT) which is the windowed
version of fourier trans form Eq. 5 (Donocho, 1995;
Tacobsen and Lyons, 2003, 2004), tries to accommodate
the deficiency of Fourier transform:

oo

F(f) = f L “
F (r,f:h) = j *(Oh(t— T)e (5)

x(t) = Time domain signal

T = Translation of window along time axis
f = Frequency

t = Time

h'(t) = Decompostion window

Relationship of bed-thickness with predominent freq and vel ocity

Bed thickness (m)
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Frea dom (Hz) 2000

Fig. 3(a-d). Resolution of sea number wavelet depends on number of factors, (a-b) It increase with the mcrease in
frequency bandwidth and predominant frequency, (c¢) Increase in layer velocity leads to increase is
resolvable layer thuckness and (d) Dependence of resolvable bed thickness on predominant frequency and

layer velocity
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Fig. 4(a-b). (a) Overlaid comparison of impulse (black) and the earth system response (seismic wavelet), (b) Impuse
contain almost all frequencies (i.e., 0 to nyquest frequency) whereas seismic wavelet is bandlimited which

leads to limit in seismic resclution
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Fig. 5(a-b). (a)Ricker wavelet with the f,, = 35 Hz and (b) Amplitude spectrum of the wavelet (black line), large and small
Gaussian window with extension both negative and positive domain

Non-stationary thin bed model creation process is
the extension of the bandpass filtering process used n
signal processing. Figure 5 shows the graphical
llustration of band pass filtering in fourier domain.

Figure 5a shows the input Ricker wavelet with the
predominant frequency of 35 Hz Figure 5b shows the
amplitude spectrum of the input wavelet in black line. This
amplitude spectrum 1s presented both in negative and
positive domain so that the Gaussian windowing process
can be better visualized whereas red and blue lines
represents the large and small Gaussian window
respectively. The pomnt wise multiplication of these
windows with the amplitude spectrum of the input
wavelet, produce low and high predominant frequency
spectrum respectively as shown in Fig. 6a and b.

Figure 6a show the original amplitude spectrum
(black) and the spectrum after the application of large
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Gaussian window (red) which shows that almost all the
frequencies are preserved through wide window size
whereas Fig. 6b shows the comparison of original
amplitude spectrum with small windowed amplitude
spectrum which shows the that frequency bandwidth is
reduced and the predommant frequency 1s shifted
towards the low frequency side. In these amplitude
spectrumn’s, the total energy of amplitude spectrum after
the application of Gaussian filtering is normalized with
respect to the origmal Figure 7a and b show the
comparison of the original wavelet with the wavelet
reconstructed from wide and short window amplitude
spectrum. Wide Gaussian window size preserved almost
all the frequencies which leads to almost the origmal input
seismic wavelet whereas shorter Gaussian window size
leads to smaller frequency bandwidth and large wavelet
duration. This decrease in frequency bandwidth leads to
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Fig. 6(a-b). Energy balanced, bandlimited amplitude spectrum obtained through Gaussian window in furier domain
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Fig. 7(a-b). Comparison of the (a) Original wavelet with

the large Gaussian window filtered wavelet and (b) Original

wavelet with the wavelet reconstructed from small windowed filtered amplitude spectrum

increase in tuning thickness of the seismic wavelet
from 12 to 24 msec as shown n Fig. 8.

This predominant frequency
mnplemented on the amplitude specttum of each
windowed version of the signal obtained through spectral
decomposition. The Gaussian window filtering width 1s
non-stationary which has a half-width of 80 Hz on the
left side and progressively reduce to 10 Hz on the
right side. This non-stationary Gaussian window limits the
frequency bandwidth and shift the predominant
frequency from high to low progressively which leads to
non-stationary thin bed model.

Figure 9 shows the input stationary thin bed model,
which contain 6 thin bed events where each event 1s at
tuning thickness where as Fig. 9b shows its spectrogram
created while using Gaussian window of half length of
20 samples. Figure 9¢ show the non-stationary Gaussian
window which changes its width from 80 to 10 Hz
progressively from left to night This non-stationary
Gaussian window when multiplied point wise with
spectrogram of the stationary thin bed model, limits the
bandwidth at each translation. Figure 9d shows the

shift process 1s

reconstructed non-stationary thin bed model. Where the
events which were at tumng thickness become
progressively unresolvable on the right side because of
thus lose of frequency bandwidth.

Figure 10a shows the thin bed reflectivity model
with the event at equal spacing whereas Fig. 10b
shows the non-stationary thin bed model where the
frequency bandwidth i3  progressively decreased
from left to right. Figure 11 shows the comparison
between the stationary and non-stationary thin bed
model which show the decrease m resolving power of
non-stationary thin bed model without producing point
discontinuities.

TESTING OF NEW SIGNAL PROCESSING
TECHNIQUES

Recently developed algorithms like Daifferential
Resolution (DR) (Sajid ef al., 2012) and Short Tiune Fourer
Transform Half Cepstrum (STFTHC) (Sajid et al., 2013)
algorithm are compared for seismic resolution and
handling of non-stationary thin bed model.
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Fig. 8(a-b) Comparison of tuning analysis of the seismic wavelet after Gaussian window filtering. Tuning analysis of
(a) The wide frequency bandwidth wavelet, (b) Short frequency band width wavelet
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Fig. 9(a-e): Conversion of stationary thin bed to non-ststionary thin bed model through non-stationary Gaussian filtering

Figure 12a shows the application of Differential
Resolution (DR) algorithm on stationary thin bed model
where the event: Which were unresolvable because of
the interference effect of the wavelet, become
resolvable after the application on DR algorithm.
Whereas Fig. 12b show the application of DR on
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non-stationary thin bed model. As the algorithm is based
on the idea of variation of amplitude with respect to time
and the input variable of the algorithm (i.e., -2nd, 4th, -6th
differential, smooth version and original signal) are
normalized respect to whole seismic traces, so algorithm
15 able to resolve the seismic event when the seismic wave
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Fig. 10{a-b): (a) Original thin bed reflectivity model and (b) Events become unresolvable as bandwidth decreased
from left to right in synthetic seismic
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Fig. 11: Comparison of stationary (red color) and non-stationary (black color) thin bed model
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Fig. 12(a-b): Application of differential resolution on stationary and non-stationary thin bed model, (a) Application of
differential resolution improved resolution of stationary thin bed model and (b) Resolution achieves
through DR, depends upon the frequency contents of the seismic waveform
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Fig. 13(a-b): Application of STFTHC algorithm on stationary and non-stationary thin bed model, (a) Algorithm is able
to resolve thin bed featurs far below the tumng thickness, (b) Algorithm 1s effectively able to resolve thin
bed features of non-ststionary thin bed model

form contains the high frequencies but the absence of
high frequency effects the resolving power of the
algorithm.

The Short Time Fourier Transform Half Cepstrum is
the bandwidth expansion algorithm. Tt expands the
frequency bandwidth at each translation of spectrogram
by implementing the logarithm on windowed signal
amplitude spectrum. This broader frequency spectrum
can be observed both in stationary (Fig. 13a) and
non-stationary (Fig. 13b) thin bed model through
better seismic resolution and low value of side lobes. As
this frequency broadening is implemented at each
translation of the spectral decomposing window so the
algorithm is capable to improve the resolution of
non-stationary thin bed model. This broademng of
frequency spectrum depends upon the frequency content
at each window interval which keep the algorithm from
high frequency boost and from false seismic features
creation.

CONCLUSION

Testing of seismic resolution algorithm on synthetic
thin bed model is the first step to check the effectiveness
of the algorithm for seismic resolution. There are a number
of factors which affect the seismic resolution; one of them
15 sewsmic frequency bandwidth. The frequency
bandwidth of the seismic is non-stationary and it
decreases with time as wave propagates subsurface. The
new presented technique 1s capable to modify the
frequency bandwidth of synthetic seismic without
producing point discontinuities. The new non-stationary
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thin bed model provides the criteria to test the
effectiveness of the algorithms for hidden feature
extractiorn.
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