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Abstract

Background and purpose

Ultrasound imaging is a very essential technique in medical diagnosis due to its being safe,
economical and non-invasive nature. Despite its popularity, the US images,however, are corrupted
with speckle noise, which reduces US images qualities, hampering image interpretation and
processing stage. Hence, there are many efforts made by researchesto formulate various despeckling
methods for speckle reduction in US images.

Methods

In this paper, a subspace-based speckle reduction technique in ultrasound images is proposed. The
fundamental principle of subspace-based despeckling technique is to convert multiplicative speckle
noise into additive via logarithmic transformation, then to decompose the vector space of the noisy
image into signal and noise subspaces. Image enhancement is achieved bynulling the noise subspace
and estimating the clean image from the remaining signal subspace. Linear estimation of the clean
image is derived by minimizing image distortion while maintaining the residual noise energy below
some given threshold. The real US data for validation purposes were acquired under the IRB protocol
(200210851-7) at the University of California Davis, which is also consistent with NIH requirements.

Results

Experiments are carried out using a synthetically generated B-mode ultrasound image, a computer
generated cyst image and real ultrasound images. The performance of the proposed technique is
compared with Lee, homomorphic wavelet and squeeze box filter (SBF) in terms of noise variance
reduction, mean preservation, texture preservation and ultrasound despeckling assessment index
(USDSAI). The results indicate better noise reduction capability with the simulated images by the
SDC than Lee, Wavelet and SBF in addition to less blurry effect. With the realcase scenario, the
SDC, Lee, Wavelet and SBF are tested with images obtained from raw radio frequency (RF) data.
Results generated using real US data indicate that, in addition to good contrast enhancement, the
autocorrelation results shows better preservation of image texture by SDC than Lee, Wavelet and
SBF.



Conclusion

In general, the performance of the SDC filter is better than Lee, Wavelet and SBF in terms of noise
reduction, improvement in image contrast and preservation of the autocorrelation profiles.
Furthermore, the filter required less computational time compared to Lee, Wavelet and SBF, which
indicates its suitability for real time application.
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Introduction

Ultrasound (US) imaging is one of the most commonly used medical imaging due fordiagnostic pur-
poses to its many advantages such as portability, the noninvasive nature, relatively low cost and presents
no radiation risk to patient. These features have made the US imaging as the mostprevalent diagnostic
tool for health practitioners over other more sophisticated imaging techniquessuch as CT scan, MRI or
PET. Unfortunately, like SAR, US images exhibit a speckle pattern and its statistical model is identical
to single-look SAR amplitude signals. Speckle in ultrasound has adverse effect in such a way it causes
reduction in image contrast resolution. In [1], Bamber and Daft show thatspeckle in US images cause
reduction of lesion detectability by approximately a factor of eight.

An US machine works by introducing into the body of interest a low-energy pulse of sound with fre-
quencies typically between 3 and 30MHz by a transducer probe that touches the patients’ skin surface.
Upon travelling through the body tissue, some of the pulses get attenuated while some small portion of
the pulse energy are scattered back to the probe. The scattered pulse is then received by the same probe
to produce echo signals which are processed to form two-dimensional images, also known as sonogram.
This two-dimensional anatomical maps are called B-mode (brightness) images [2].

In principle, US images provide information about internal tissue structureswhich resulted from inter-
action between anatomical tissues with the transmitted ultrasound pulse. Due to interaction between
ultrasound waves with tissue, backscattered echo signals are produced, in the form of reflection, scatter-
ing, interference and absorption. These echo, resulted from coherent summation of ultrasound scatterers,
carry information about the tissue under investigation. The nature of coherent summation of such signals
gives rise to an interference pattern known as speckle [3].

The despeckling techniques applied in US and SAR imagery can be classifiedinto four main groups,
namely, linear and non-linear filters, adaptive speckle filters, wavelet-based filters and anisotropic diffusion-
based (AD) approach. In linear filtering technique [4,5], the multiplicative speckle noise is first con-
verted into an additive noise by applying logarithmic transformation to the speckled image followed by
a Wiener filter in order to reject the resultant additive noise. The despeckled image is fully recovered by
applying exponential transformation onto the output of Wiener filter. The technique, which convert the
multiplicative speckle noise into an additive one, are commonly referred as homomorphic despeckling
methods. The Wiener filter is the oldest approach to image denoising, is optimal inthe sense of mini-
mum mean-square error (MSE) and is space invariant linear estimator of thesignal for images degraded
by additive white noise.

The nonlinear filters are possible alternative to the standard linear filters, and the most popular one is
the median filter. It has the advantage of preserving edges and is very effective at removing impulsive
noise. The median filter sorts the intensities in the neighbourhood window of thereference pixel and



calculates the median value of the sorted data. The denoised pixel is obtainedby replacing the original
reference pixel value by the median value calculated for the particular neigbourhood window [6-8]. The
main problem is that the median filter would blur edges and tiny details.

Wavelet-based denoising techniques continue to generate great interestamong the computer vision and
image processing community. Some of the proposed wavelet-based speckle filters are presented in
[9-15]. The success of the technique is due to the fact that in the waveletdomain, the noise is uniformly
spread throughout the coefficients, while most of the image information is concentrated in few significant
ones. In other word, the wavelet-transformed images tend to be sparse and consequently, noise removal
can be achieved by properly suppressing orthresholding the small coefficients that are likely due to
noise. The wavelet-based denoising techniques involve three major steps,1) perform a 2-D wavelet
transform, 2) modify the noisy coefficients using a shrinkage function, and 3) perform a 2-D inverse
wavelet transform [16,17]. In general, the most critical step in wavelet denoising techniques is the
modification of wavelet coefficients. The classification of the different type of wavelet denoising is
typically based on it different approach in modifying the noisy coefficients.

The adaptive speckle reducing filters such as Lee, Kuan and Frost can be applicable to both US and SAR
images. The methods are developed based on multiplicative model of speckle noise. The methods are
based on two assumptions, 1) the recorded image and the speckle noise arestatistical independence [18],
and 2) a constant ratio of noise standard deviation to mean throughout the image. The second assumption
is valid in homogeneous regions. Each of these filters achieved speckle reduction via spatial filtering in a
square-moving window known as kernel. The filtering is based on the statistical relationship between the
centre pixel and its surrounding pixels within a processing window. The typical window size are3× 3,
5 × 5, and7 × 7. With the window-based techniques, the selection of window will greatly affects the
quality of the processed image. If the window is too small, the noise filtering algorithm is not effective,
where as if the window is too large, subtle details of the image will be lost in the filtering process.

The squeeze box filter (SBF) which can be classified as an iterative technique, reduces speckle noise
by suppressing outliers as a local mean of its neighborhood [19,20]. Based on the fact that speckle is
a stochastic process where outliers inevitably occurs, the proposed SBFachieves noise reduction by
iteratively removes the outliers. Specifically, the image pixel outliers are defined to be local minimums
and local maximums determined from a3 × 3 window. Each outlier will be replaced by a local mean
determined from a window centered on the outlying pixel. The outlier pixel value is not used in com-
puting the local mean. After all the outliers are replaced by the local means, the process is repeated until
a predetermined number of iteration is reached or until convergence is attained. In [19], experimental
results showed that the SBF improves the image quality in terms of contrast enhancement, structural
similarity and segmentation result. Although an effective speckle reduction, the SBF however still has
artifacts in the form of blurred edges and irregular intensity pattern around edges [21].

In this paper, a subspace-based technique to reduce the speckle noisein US images, is proposed. Fun-
damentally, the proposed technique is an extension of the original work of Ephraim and Van Trees [22],
in speech enhancement towards 2-dimensional signals. The underlying principle is to decompose the
vector space of the noisy image into a signal-plus-noise subspace and the noise subspace. The noise
removal is achieved by nulling the noise subspace and controlling the noise distribution in the signal
subspace. For white noise, the subspace decomposition can theoretically be performed by applying the
Karhunen-Loeve transform (KLT) to the noisy image. Linear estimator of the clean image is performed
by minimizing image distortion while maintaining the residual noise energy below some given thresh-
old. For colored noise, a prewhitening approach prior to KLT transform,or a generalized subspace for
simultaneous diagonalization of the clean and noise covariance matrices, canbe used. The fundamen-
tal signal and noise model for subspace methods is additive noise uncorrelated with the signal. But,
in US images the noise is multiplicative in nature, so a homomorphic framework takesadvantage of



logarithmic transformation, in order to convert multiplicative noise into additive noise.

The paper is organized as follows. Firstly, the statistic of speckle noise in USimages is described.
Secondly, the principle of subspace and how it can be extended to speckle noise removal is presented. In
specific, this second section covers the proposed subspace techniqueand its implementation in speckle
noise filtering followed by experimental results to determine optimum value of Lagrange multiplier.
The subsequent section presents the experimental results to validate and evaluate the performance of
the proposed filter. The performance evaluation of the proposed technique is divided into three main
categories, 1) using simulated B-mode US images 2) using Field II generated images and 3)using real
US images in comparison to Lee filter, wavelet filter [23,24] in homomorphic framework and SBF
technique [19]. The final section concludes this paper.

For clarity, an attempt has been made to adhere to a standard notational convention. Lower case boldface
characters will generally refer to vectors. Upper case characters willgenerally refer to matrices. Vector
or matrix transposition will be denoted using(.)T andRm×m denotes the real vector space ofm × m

dimensions.

Signal and noise model in ultrasound images

Consider matrixG to be the noisy observation of the original image,W . Let denoteξm andξa as the set
of corrupting multiplicative and additive speckle noise components, respectively. The noisy US image
can be expressed as [4,9,11,25]

G = Wξm + ξa. (1)

Generally, in medical US images, the effect of the additive speckle noise (such as sensor noise) is
considerably less significant than the multiplicative component [4,9,11,25]. Taking the assumption that
the speckle is fully developed and the additive term can be neglected, equation (1) can be expressed as

G = Wξm. (2)

Applying the logarithmic function to both side of (2), we get

log(G) = log(W ) + log(ξm). (3)

Expression (3) can be rewritten as
Y = X +N, (4)

whereY,X andN are the logarithms ofG,W andξm respectively.

The statistical theory to describe US speckle are drawn from the literature of laser optic by Goodman
in [26]. Goodman mathematically models speckle as an accumulation of a large number of complex
phasorsz, to be denoted asz = a+ jb, also known as complex random walk. These complex phasors,z

can have either constructive or destructive relationship with each other.Applying central limit theorem
to the random walk will results in a signal having two-dimensional Gaussian probability density function
(PDF) in the complex plane,

PZ (z) =
1

2πv2
exp

(

−|z|2
2v2

)

, (5)

wherev2 is the variance of the Gaussian distributed in-phase/quadrature (IQ) components. Equation (5)
is simply the product of two independent Gaussian density functions with zero mean and variancev2

and referred to as a circular Gaussian probability density function. Usingthe law of conservation of



probability, the PDF of speckle phasors magnitude,A =
√
a2 + b2 is given by

PA (A) =
A

v2
exp

(

− A2

2v2

)

, A ≥ 0. (6)

For the intensity format,I = A2, the PDF is given by [27]

PI (I) =
1

2v2
exp

(

− I2

2v2

)

, I ≥ 0. (7)

The equation in (6) and (7) are respectively, known as Rayleigh PDF and exponentional PDF. In B-mode
US signal, the magnitudeA is the quantity of interest since the image is form using envelope detection,
in which the phase components are removed. The histogram of the pixels in homogeneous area marked
as “A” is shown in Figure 1 which shows a distribution consistent with Rayleighdistribution.

Figure 1 An US image (a) and histogram of the homogeneous region A (b).

The subspace-based techniques for noise reduction

In this section, we derive the linear spatial-domain constraint (SDC) estimator, which minimizes the
image distortion while constraining the energy of residual noise. The fundamental principle is to decom-
pose the vector space of the noisy image into a signal subspace and noise subspace. The decomposition
of the space into two subspaces can be done using either the singular valuedecomposition (SVD) or
the eigenvalue decomposition (EVD). The noise removal is achieved by nulling the noise subspace and
controlling the noise distribution in the signal (signal + noise) subspace. Webegin with derivation of
time (spatial) domain constraints estimator which minimizes the image distortion while constraining the
energy of residual noise. Using the signalX and an additive noise modelN , the noisy image matrix
can be expressed asY = X + N . In this case, the error signalε obtained from the linear estimation,
X̂ = HY is given by

ε = X̂ −X = (H − I)X +HN = εX + εN , (8)

whereεX represents the image distortion, andεN represents the residual noise [22]. Defining the energy
of the image distortion̄εX2, and the energy of the residual noisēεN

2 as

ε̄X
2 = tr

(

E
[

εTXεX
])

, (9)

ε̄N
2 = tr

(

E
[

εTN εN
])

, (10)

whereE [·] is the expected value, the optimum linear estimator can be obtained by solving the following
spatial-domain constrained optimization problem [22], [28]

min
H

ε̄2Xsubject to
1

m
ε̄2N ≤ σ, (11)

whereσ is a positive constant.

The optimum estimator is the sense of Eq. (11) can be found using the Kuhn-Tucker necessary con-
ditions for constrained minimization [29]. It involves solving a constrained minimization problem by
applying the method of Lagrange multipliers [30]. Specifically,H is a stationary feasible point, if it
satisfies the gradient equation of the Lagrangian,



L(H,λ) = ε̄2X + λ(ε̄2N −mσ) = tr
(

(H − I)RX (H − I)T
)

+ λ
(

tr
(

HRNHT
)

−mσ
)

, (12)

whereλ ≥ 0 is the Lagrange multiplier, and

λ(ε̄2N −mσ) = 0 for λ ≥ 0. (13)

The solution to Eq. 12 is a stationary feasible point that satisfies the gradientequation,∇HL(H,λ) = 0,
thus we obtain

∇HL(H,λ) = 2(H − I)RX + 2λHRN = 0, (14)

thus,
HSDC = RX(RX + λRN )−1. (15)

Since the noise is assumed to be white, thenRN = v2nI wherev2n is the noise variance andI is the
identity matrix. Hence, the solution for the optimum estimatorHSDC is given as

HSDC = RX(RX + λv2nI)
−1. (16)

Before the final form of the optimal estimatorHSDC is considered, it is worthy to note that there is
a strong empirical evidence indicating that the transformed covariance matrixof most images by the
eigenvectors of theRX have some eigenvalues small enough to be considered as zeros. This means that
the number of basis vectors for the pure image is smaller than the dimension of its vectors.

To verify this key statement, we plot the eigenvalues of two ultrasound images of captured from a
patient, as shown in Figure 2. The images shown in Figure 2 correspond to malignant and benign tumor
obtained from biopsy-verified studies. The image size is1556× 360 pixels where the x-axis giving the
lateral sizes and the y-axis giving the axial sizes. Specifically, for the malignant tumor, the patient was
diagnosed with IDC (Invasive Ductal Carcinoma) and for the benign tumor, the patient was diagnosed
with fibroadenoma. The RF frames are recorded at 17 frame/second anda total of 12 seconds of data
are acquired using a linear transducer array from the AntaresR© System. In order to obtain the B-mode
ultrasound images, the URI Offline Processing Tools (URI-OPT) run on MATLAB platform is used to
convert the RF data to the B-mode images as shown in Figure 2.

Figure 2 Uncropped B-mode ultrasound images of breast tissue, malignant tumor (left) and be-
nign tumor (right). Courtesy of Ultrasonic Imaging Laboratory at University of Illinois at Urbana-
Champaign.

The eigenvalue plot in Figure 3, it shows that some of the eigenvalues of matrix RX are close to zero,
which indicates that the energy of the clean image is distributed among a subsetof its coordinates and
the signal is confined to a subspace of the noisy Euclidean space. Since all noise eigenvalues are strictly
positive, the noise fills in the entire vector space of the noisy image. In other word, the vector space
of the noisy image is composed of a signal-plus-noise subspace and a complementary noise subspace.
The signal-plus-noise subspace or simply the signal subspace comprisesvectors of the clean image as
well as of the noise process. The noise subspace contains vectors of the noise process only. Using
eigendecomposition ofRX = U∆XUT , Eq. (16) can be expressed as

HSDC = U∆X

(

∆X + λv2nI
)−1

UT . (17)



Figure 3 Eigenvalue profile ofRX , generated from the US images in Figure 2.

The link between the maximal oriented energy and the signal subspace as well as between the minimal
energy and the noise subspace were established in [31]. Using the eigendecomposition analysis [31], in
which the∆X,i = ∆Y,i− v2n, we can improve the form of model matrixHSDC in Eq. (17) by removing
the noise subspace and estimating the clean image from the remaining principal signal subspace

HSDC = U1∆X1

(

∆X1 + λv2nI
)−1

UT
1 . (18)

In the implementation of SDC, a proper selection of signal subspace dimensionr and Lagrangian mul-
tiplier, λ are critical in order to achieve the best noise reduction technique. For subspace dimension,
a method based on eigenvalues is proposed in [31,32] whereas the Lagrangian multiplier is to be em-
pirically determined. As with any other noise filtering technique, the value noisevariance needs to be
estimated. In this case, the noise variance can be estimated using the last trailingend of the smallest
singular value as outlined in [31].

When dealing with ultrasound data, the SDC is implemented in homomorphic framework where the
noisy image is first log-transformed prior to SDC filtering. This transformationwill convert the multi-
plicative nature of the speckle to an additive on. The final form of the despeckled image is recovered
by performing antilog on the output of the SDC filter. The implementation detail of SDC are given as
follows,

1. Apply the homomorphic transformation to the noisy image,Y = log(G).

2. Estimate the noise variance,v2n.

3. Compute the dimension of signal subspace,r.

4. Using the estimatedr in step 3, apply eigendecomposition onRYl
, then extract the basis vectors

of signal subspaceU1, and their related eigenvalues∆(i)
X = ∆

(i)
Y − v2n.

5. Select the best value ofλ, then compute the optimum linear estimator,

HSDC = U1∆X1

(

∆X1 + λv2nI
)−1

UT
1 . (19)

6. Compute the clean image,̂X = HSDC · Y.

7. Reverse the homomorphic effect by taking the exponential of theX̂ as follows

Ŵ = 10X̂ . (20)

In essence, reversing the homomorphic effect in step 7 converts the logarithmic form of the filtered
image to a linear form prior to image display.

Optimum value of the lagrange multiplier

To find the bestλ value for SDC, a test image made up is created as shown in Figure 4. The testimage
is made up of synthetic patterns, specimens from Broadatz texture set, geometrical shapes, and some
alphabets with different size. In particular, the bright and dark strips onthe upper left corner closely
resemble clinical ultrasound images of carotid artery at the far wall [33]. The test image is selected as



it combines different critical features of typical US images. The Broadatztexture is to assess on how
well the filter can preserves the texture of the original image. Besides, the different geometrical shapes
and alphabets of different sizes are included in order to evaluate the filtercapability in preserving edges
and fine details of the image. Lastly, the selection of bright and dark strips that closely resemble clinical
US images of carotid artery is to assess the filter capability in preserving the artery wall and its edges.
The experiment is conducted by corrupting the test image speckle noise of variance extends from 0.03
to 0.05 andλ ranging between 1 and 105. The signal-to-noise value (SNR) calculated as

SNRdB = 10 log10
v̄2X

MSE
, (21)

where MSE represents the mean-square error, given by

MSE =
1

mn

m
∑

i=1

n
∑

j=1

(X (i, j)− Y (i, j))2 , (22)

is used to indicate the denoising effect of the SDC. The results are shown inFigure 5.

Figure 4 Test image.

Figure 5 SNR of the despeckled test image in 4 obtained at differentλ values.

The results in Figure 5 show that the SDC is not too sensitive to the selected value of the Lagrange
multiplier. Notably, the results in Figure 5 show that for high noise level, (v2n > 0.04) the despeckle
effect of the SDC, measured in terms of the SNR, shows improvement by 1 dBto 1.5 dB, as the Lagrange
multiplier varies from 1 to 40. For lower value noise level, (v2n ≤ 0.04) the SNR improvement is around
0.3 dB as the Lagrange multiplier varies from 1 to 10. In general, the results inFigure 5 show better
SNR values for higher values of the Lagrange multiplier. However, it should be noted that high value of
λ may results in oversmoothed images and cause loss of details. Consequently,the rule of selectingλ
is that for noise variance less than 0.04,λ should be selected to be around 10 and with noise variance
greater than 0.04 it should be selected to be less than 40.

Results and discussions

The experimental results presented in this section can be divided into 2 parts. In the first part, the
performance of the proposed SDC technique is compared with Lee [34], homomorphic wavelet filter
[35] and SBF technique [19] using a simulated speckle image. With a known noise-free image, the
performance of SDC is measured in terms of Peak Signal-to-Noise Ratio (PSNR) defined as

PSNR = 20 log10

(

255√
MSE

)

, (23)

The value of255 in Eq. (23) corresponds to the maximum possible pixel value and MSE is defined as
in (22).

In the second part, the performance of the proposed SDC technique is investigated using a computer
generated image and real US images. Here, the Lee filter is implemented with7 × 7 window size, the
homomorphic wavelet is used with Daubechies length-eight filter and a7 × 7 window and the SBF
technique is implemented according to the set up given in [19]. The SDC is implemented as in section .
The rank values and the noise variance of the different images are calculated using the method outlined
in [31]. As for the Lagrange multiplier, the value is selected using the rule setin the previous section.



When using computer generated US or real US images, the noise-free imageis not available which is the
practical scenario of denoising applications of US images. Therefore, reference-free methods are used
to quantitatively assess the denoising performance. The reference-free methods in this work are mean
preservation, normalized variance, autocorrelation [36] and USDSAI [37]. Details on each assessment
metric are as follows;

1. Mean Preservation: A good speckle filter will maintains the mean intensity within a homogenous
region.

2. Normalized Variance: The normalized variance indicates the performance of the filter in homo-
geneous areas. This metric is given by

var

mean2
=

1
mn

∑m
i=1

∑n
j=1

(

X (i, j)− X̄
)2

X̄2
, (24)

whereX̄ corresponds to the mean value of the pixel. In general, lower normalized variance values
in the filtered image indicate better speckle suppression.

3. Autocorrelation: is another method of filter assessment in homogeneous area where close auto-
correlation profile to the original image indicates better texture preservation.The autocorrelation
for m× n imageX is given as [36]

ρ(x, y) =

1
(m−|x|)(n−|y|)

∑

i

∑

j X(i, j)X(i+ x, j + y)

1
mn

∑m
i=1

∑n
j=1X(i, j)2

, (25)

whereX(i, j) is the grey value of pixel(i, j).

4. Ultrasound Despeckling Assessment Index (USDSAI): is a modified Fisher discriminant contrast
metric [37]. USDSAI gives an indication on how well a despeckling algorithmreduces variances
in homogeneous classes while keeping the distinct classes well separated.The metric is defined
as

USDSAI =

∑

k 6=l (meanCk
−meanCl

)
∑K

k=1 varianceCk

, (26)

where|Ck| denotes the number of pixels in classCk. If a despeckling filter produces classes that
are well separated then the numerator in 26 will be large. Conversely, if theintraclass variance is
reduced, then the denominator will be small giving large value of USDSAI indicating desirable
image restoration and enhancement.

Evaluation of SDC performance in simulated speckle noise scenario

In this experiment, the capability of the SDC technique in reducing the speckle noise is tested and
compared with Lee, homomorphic wavelet and SBF technique. The performances of the noise reduction
techniques are measured in terms of PSNR values as tabulated in Table 1.



Table 1 PSNR (in dB) values for despeckling of the test image in Figure 4
Noise variance Noisy Lee Wavelet SBF SDC

0.02 20.61 19.88 21.66 21.68 21.73
0.04 18.98 19.73 20.56 20.49 20.60
0.06 16.80 19.46 18.18 19.05 19.84
0.08 14.61 18.96 15.61 18.23 19.11
0.10 11.69 18.07 12.26 17.81 17.67

The results in Table 1 show clearly the better reduction of noise achieved bySDC to Lee, Wavelet and
SBF as the noise variance as the noise varies from 0.02 to 0.1. In average, the PSNR value of the
SDC is improved by more 3dB followed by SBF(2.9dB), Lee (2.68dB) and Wavelet (1.1dB). However,
in order to gain more insight into the performances of the SDC, the denoised images of Figure 4 by
SDC, Lee, Wavelet and SBF are shown in Figure 6. Visual inspection of the denoised image by Lee
in Figure 6 clearly shows the blurring effect of Lee filter. The wavelet onthe other hand shows very
close performance to the SDC except for some ringing effect which is visible in the homogeneous part
of the image. The SBF exhibits some blurred edges with some noise are not removed around edges.
In summary, SDC shows better noise reduction capability and less blurring effect in comparison to Lee
and SBF and comparable performance to Wavelet, but with significantly less artifacts and better details
preservations.

Figure 6 Restoration of test image in Figure 4 at noise variance,v2n = 0.03. From left to right,
Original, Lee filter, Wavelet filter, SBF and SDC filter.

Evaluation of SDC performance using a Field II simulated image

In this experiment, the computer model of a cyst phantom is generated using the MATLAB Field II
simulation [38,39]. The phantom contains five point targets; 6, 5, 4, 3, 2 mm diameter waterfilled cysts,
and 6, 5, 4, 3, 2 mm diameter high scattering regions. The resulted B-mode USimage is shown in
Figure 7. The “Cyst” phantom in Figure 7 is composed of 3 constant classes and the filters ability to
reduce speckle noise while keeping the distinct classes well separated willbe evaluated using normalized
variance, mean preservation, preservation of autocorrelation [31] and USDSAI assessment metric. Prior
to despeckling, the cyst image is converted into an 8-bit image of size512× 512 pixels.

Figure 7 Uncropped US image of a computer generated cyst phantom.

In the first experiment, the normalized variance and mean preservation forthe cyst image are calculated
over two selected regions labeled as A and B as in Figure 8. The normalized variances of the two regions
calculated before and after denoising for SDC, Lee, Wavelet and SBF are presented in Table 2. The
results in Table 2 show clearly the better reduction of noise achieved by SDCcompared to Lee, Wavelet
and SBF over the two homogeneous regions. In order to further verify the better better performance by
the SDC, the denoised images of Figure 7 by SDC, Lee, Wavelet and SBF are shown in Figure 8. Visual
inspection of the denoised images in Figure 8 clearly shows far less introduced blurring effect, better
noise reduction, and better contrast enhancements by the SDC in comparison to the Lee, Wavelet and
SBF. On the other hand, Figure 8 also shows that the SBF introduces relatively similar blurring effect to
Lee and Wavelet though it gives better contrast enhancement values, measured in terms of USDSAI as
tabulated in Table 3.



Table 2 Normalized variance in denoised images of the cyst phantom in Figure 8
Original Lee Wavelet SBF SDC

Region A 0.03 0.02 0.02 0.02 0.01
Region B 0.04 0.02 0.02 0.01 0.01

Table 3 USDSAI value in denoised images of the cyst phantom in Figure 8
Original Lee Wavelet SBF SDC

1.00 2.10 1.80 3.07 3.00

Figure 8 Restoration of cyst image generated from Field II simulation. From left to right, Original,
Lee filter, Wavelet filter, SBF and SDC filter.

In addition to variance reduction, the values of mean preservation for the two regions calculated before
and after denoising for SDC, Lee, Wavelet and SBF filter are also evaluated and included in Table 4.
The results in Table 4 indicate the better capability by Lee to Wavelet, SBF and SDC in preserving the
mean value in the computer generated cyst image in Figure 7. The better mean preservation by Lee is
highly expected because of the averaging scheme of Lee filter which tendsto maintain the mean value
in the image.

Table 4 Mean preservation in denoised images of the cyst phantom in Figure 8
Original Lee Wavelet SBF SDC

Region A 127.74 127.87 126.73 134.87 126.48
Region B 125.60 125.69 123.80 133.02 125.17

In order to assess the capability of the different algorithms in texture preservation in the denoised image,
the autocorrelation in region A and B of the cyst image in Figure 7 are calculated before and after speckle
filtering and depicted in Figure 9. The autocorrelation profiles in Figure 9 clearly show the better details
preservation by the SDC in comparison to Lee, Wavelet and SBF. Notably, the profiles by Lee, Wavelet
and SBF exhibit wider profiles in the neighbourhood of zero lag and largely deviated from the original
at other lags. On the contrary, the SDC shows close autocorrelation profile of the denoised image to the
original one in terms of shape and better preservation of the unit impulse structure at zero lag value than
Lee, Wavelet and SBF.

Figure 9 Autocorrelation profile for Region A (top) and Region B (bottom) of cyst image in Fig-
ure 7. From left to right, Original, Lee filter, Wavelet filter, SBF and SDC filter.

Evaluation of SDC performance using real US images

In this experiment, the performance of the proposed SDC is analyzed and compared with Lee and
Wavelet using ultrasound images captured from a patient as shown in Figure 2. The images are biopsy-
verified studies and presented with non-palpable tumors initially detected by mammography [40]. These
images are shown in Figure 2 for malignant and benign tumor. In Figure 2, thepatient with malignant
tumor was diagnosed with invasive ductal carcinoma whereas the patient withbenign tumor was diag-
nosed with fibroadenoma. The image size is1536 × 256 pixels with the x-axis and the y-axis giving
lateral sizes and axial sizes of the image, respectively. The RF frames are recorded at 17 frame/second
and a total of 12 seconds of data are acquired using a linear transducerarray from the AntaresR© System.
In order to obtain the B-mode ultrasound images, the URI Offline ProcessingTools (URI-OPT) run on
MATLAB platform is used to convert the RF data to the B-mode images as shownin Figure 2.



In the first part of this experiment, two homogeneous areas are selected and marked as region A and
B Figure 10. In order to assess the capability of the filters in reducing noisein image, variances are
calculated over these two regions before and after denoising the image in Figure 2. The values of
normalized variance are tabulated in Table 5. The results in Table 5 indicate thebetter noise reduction
capability by the Wavelet in comparison to Lee, SBF and SDC which show a relatively comparable
performance. However, in order to gain more insight into the performanceof the Wavelet and to aid the
interpretation of the results in Table 5, the denoised images by Lee, Wavelet, SBF and SDC are shown
in Figure 11. The results in Figure 11 clearly show that the main reason for the high noise reduction
values by the Wavelet in Table 5 is the intensive appearance of wavelet artifacts in its denoised image.
On the other hand, though the SDC gives approximately similar values to Lee and SBF in Table 5, the
denoised images in Figure 11 show clearly better noise reduction and image details preservation.

Table 5 Normalized noise variance in the denoised images of real US images in Figure 2
Malignant tumor Original Lee Wavelet SBF SDC
Region A 0.012 0.003 0.001 0.003 0.003
Region B 0.009 0.004 0.001 0.004 0.003
Benign tumor Original Lee Wavelet SBF SDC
Region A 0.015 0.004 0.001 0.004 0.004
Region B 0.018 0.007 0.003 0.007 0.005

Figure 10 Region A and B in the US images of the breast tissue of Figure2.

Figure 11 Restoration of malignant tumor (top) and benign tumor (bottom) in Figure 2. From left
to right, Original, Lee filter, Wavelet filter, SBF and SDC filter.

In addition to the noise reduction capability addressed by the normalized variance, the mean preservation
capability is also tested and presented in Table 6. The results show the better performance of Lee in
preserving mean value and this performance is very close to SDC. Notably,the mean value of Lee and
SDC only differs by no more than 0.03. On the other hand, the result on Wavelet and SBF indicates
poor preservation of mean by the two filters. In terms of contrast enhancement, given by the USDSAI
values as shown in Table 7, the SDC gives better contrast enhancement toboth Lee and Wavelet but a
comparable performance to SBF.

Table 6 Mean preservation in the denoised images of real US images in Figure 2
Malignant tumor Original Lee Wavelet SBF SDC
Region A 5.29 5.30 0.72 12.80 5.29
Region B 7.49 7.49 0.87 14.90 7.46
Benign tumor Original Lee Wavelet SBF SDC
Region A 4.83 4.84 0.68 12.32 4.83
Region B 5.23 5.24 0.72 12.75 5.24

Table 7 USDSAI value in denoised images of real US images in Figure 2
Original Lee Wavelet SBF SDC

Malignant 1.00 2.63 2.96 4.11 4.09
Benign 1.00 2.83 2.70 4.22 4.17

To gain more insight into the performance of the three considered techniques, their capability in preserv-
ing the characteristics of the original image is tested in terms of autocorrelation profiles of the selected



region, A and B as shown in Figure 12. The results in Figure 12 give clearindication on the better
preservation of the texture of the original image by SDC in comparison to Lee,Wavelet and SBF. In
fact, the SDC shows close autocorrelation profile of the denoised image to theoriginal one especially
in term of shape and better preservation of the unit impulse structure at zero lag than Lee, Wavelet and
SBF. Moreover, the autocorrelation profiles produced by Lee and Wavelet shows widened profiles at
zero lag and largely deviated profiles from the original at other lags.

Figure 12 Autocorrelation profile for Region A of malignant tumor (to p) and benign tumor (bot-
tom) in Figure 2. From left to right Original, Lee filter, Wavelet filter, SBF and SDC filter.

In the third experiment, the required computational time by Lee, Wavelet, SBF and SDC to process
the ultrasound images of Figure 2 are calculated and included in Table 8. Thefilters are implemented
on MATLAB platform using a computer with Intel(R) Xeon(R) 5607 @ 2.27 GHzprocessor and 8GB
RAM. The results in Table 8 shows that the computational times of both SDC and wavelet are almost
similar and less by nearly 3 times SBF and 10 times than Lee (7× 7).

Table 8 Computational time (in second) of Lee, Wavelet, SBF and SDCfor the US image in Fig-
ure 2

Lee Wavelet SBF SDC
Benign 63.97 8.88 17.46 6.20
Malignant 63.57 8.77 20.52 6.30

Conclusions

A subspace-based denoising technique for US images is presented and tested. The proposed technique,
SDC is based on linear estimator and rank reduced subspace model to estimatethe clean image from the
corrupted one with speckle noise. The performance of the SDC is tested withsimulated and real data,
and compared with Lee and wavelet. The results indicate better noise variance reduction capability with
the simulated images by the SDC than Lee, Wavelet and SBF in addition to less blurry effect. With
the real case scenario, the SDC, Lee, Wavelet and SBF are tested with images obtained from raw RF
data. The performances are calculated in terms of noise reduction, improvement in image contrast and
preservation of the autocorrelation profiles. The results indicate that SDCoffer better texture preserva-
tion, measured in terms of autocorrelation profiles and good contrast enhancement, measure in terms
of USDSAI value. Finally, the computational complexity of the algorithms is compared and the results
show that SDC required the least computational time compared to Lee, Waveletand SBF.
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