A Simulation Study on Factors Affecting Airwaves Using Factorial Design

Download Book (46,873 KB) As a courtesy to our readers the eBook is provided DRM-free. However, please note that Springer uses effective methods and state-of-the art technology to detect, stop, and prosecute illegal sharing to safeguard our authors’ interests. Download Chapter (804 KB)

Abstract

In shallow water Sea Bed Logging (SBL) survey, air layer response from the Electro-Magnetic (EM) signals creates a disturbance known as the source-induced airwaves. The airwaves commonly denote the energy that propagates from the EM source via the atmosphere to the receiver on the seabed. As a result, the airwaves dominate the measured survey data, so that the sought-after signals from possible hydrocarbon layers in the subsurface can be totally masked. In this study, a 5x5 factorial design is used to analyze the effect of frequency, seawater conductivity, sediment conductivity, seawater depth and offset on the magnitude of airwaves. The result based on F-statistics, indicates that frequency has higher significant effect on the magnitude of the airwaves followed by the seawater depth, offset, seawater conductivity and sediment conductivity in that order.