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Abstract. Theoretical analysis of unsteady magnetohydrodynamic free convection flow of a viscous 

incompressible radiative fluid past an infinite vertical plate with constant heat and mass flux is 

presented. The dimensionless governing linear partial differential equations have been solved using 

the Laplace transform technique. The exact solutions for the velocity, temperature and concentration 

fields are derived. The effects of radiation, magnetic field and buoyancy ratio parameters on the 

velocity and temperature fields are discussed through graphs. It is found that the velocity increases 

with increasing radiation parameter whereas it decreases with increasing magnetic field parameter 

for buoyancy assisted flows. 

Introduction 

Combined heat and mass transfer plays an important role in many engineering and environmental 

applications such as the design of chemical processing equipment, cooling towers in power plants, 

design of space vehicles, distribution of temperature and moisture over agricultural fields and 

groves of fruit trees, formation and dispersion of fog etc. The radiation effect can be quite 

significant for some industrial applications such as furnace design, glass production, plasma physics 

and aircraft re-entry aerothermodynamics that operate at high temperatures.  The application of 

magnetic field also plays an important role in MHD pumps, MHD power generators and the cooling 

of reactors. The unsteady free convection flow of a viscous incompressible electrically conducting 

fluid past an accelerated infinite vertical plate with constant heat flux was studied by Chandran et al. 

[1]. An exact solution of unsteady free convection flow past an impulsively started infinite vertical 

plate with uniform heat and mass flux was presented by Muthucumaraswamy et al. [2]. Chemical 

reaction effects on unsteady natural convection flow past an infinite vertical plate with uniform heat 

flux and variable mass diffusion were investigated by Muthucumaraswamy and Kulandaivel [3]. A 

numerical solution of the unsteady hydromagnetic free convection flow past an impulsively started 

vertical plate with uniform heat and mass flux in the presence of thermal radiation was presented by 

Ramachandra Prasad et al. [4]. Recently, Narahari and Debnath [5] investigated the unsteady 

magnetohydrodynamic free convection flow of an electrically conducting fluid past an accelerated 

infinite vertical plate with constant heat flux in the presence of heat generation or absorption. 

However, the exact solution of unsteady radiative magnetohydrodynamic free convection flow of an 

electrically conducting fluid past an infinite vertical plate with constant heat and mass flux has not 

been addressed in the literature. 

In the present paper, it is proposed to investigate the unsteady magnetohydrodynamic free 

convection flow of a viscous incompressible electrically conducting fluid past an infinite vertical 

plate with constant heat and mass flux in the presence of thermal radiation. Closed form analytical 

solutions for the velocity, temperature and concentration fields are obtained using the Laplace 

transform technique. These solutions allow convenient analysis of the physical problem and an 

understanding of the system parameters on the flow.  
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Mathematical Analysis 

Consider the unsteady free convection flow of an electrically conducting viscous incompressible 

fluid past an infinite vertical plate. The x′ - axis is taken along the plate in the upward direction and 

the y′ - axis perpendicular to the plate into the fluid by choosing an arbitrary point on this plate as 

the origin. Initially, the plate and the fluid are at the same temperature ∞
′T  and concentration ∞

′C . At 

time 0>′t , the temperature and concentration levels at the plate are raised at a constant rate. A 

uniform magnetic field of strength 0B  is applied in the y′ direction. The magnetic Reynolds number 

of the flow is assumed to be small so that the induced magnetic field is neglected in comparison 

with the applied magnetic field ( 0B ). All the physical properties of the fluid are assumed to be 

constant except the density variations with temperature in the body force term. As the plate is of 

infinite extent in x′ direction, all the physical quantities are functions of the space coordinate y′  

and time t′only and therefore the inertia terms are negligible. It is also assumed that the radiation 

heat flux in the x′  direction is negligible as compared to that in the y′  direction. Then, under the 

usual Boussinesq approximation and neglecting the heat due to viscous dissipation, the free 

convection flow along the vertical plate can be shown to be governed by the following equations: 
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The corresponding initial and boundary conditions are 
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For an optimally thin constant property gas, the radiative heat flux rq satisfies the following non-

linear differential equation [6]: 
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It is assumed that the temperature differences within the flow are sufficiently small such that 
4T ′ may be expressed as a linear function of the temperature T ′  using the Taylor series expansion 

about ∞
′T and neglecting the higher order terms, gives 

434 34 ∞∞
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In view of (5) and (6), equation (2) reduces to 
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Upon introducing the characteristic length 3/13/2 / gL ν= , the non-dimensional quantities are 

defined as follows: 
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where 
k

Lq
T w=*  and 

D

Lj
C w=*  are characteristic temperature and concentration, respectively, u′ , 

T ′  and C′  are velocity, temperature and species concentration of the fluid near the plate, 

respectively, ∞
′T  and ∞

′C  are temperature and species concentration of the fluid far away from the 

plate, respectively, t′  is time, ν  is kinematic viscosity, g  is acceleration due to gravity, β  is 

volumetric coefficient of thermal expansion, *β  volumetric coefficient of concentration expansion, 

ρ  is density, σ  is electrical conductivity, 0B  is applied magnetic field, PC  specific heat at constant 

pressure, k  is thermal conductivity, wq  is heat flux per unit area at the plate and wj  is mass flux per 

unit area at the plate, D is mass diffusivity, Gr  and Gm  are thermal and mass Grashof numbers, 

respectively, µ  is coefficient of viscosity, α  is radiation absorption coefficient, *σ  is Stefan-

Boltzmann constant, Pr is Prandtl number, R  is dimensionless radiation parameter, Sc is Schmidt 

number, N  is buoyancy ratio parameter, M  is magnetic field parameter (square of the Hartmann 

number), y  is dimensionless coordinate axis normal to the plate, t  is dimensionless time, u  is 

dimensionless velocity, θ  is dimensionless temperature, and C  dimensionless concentration of the 

species. 

In view of equations (8), equations (1), (7) and (3), respectively, take the following non-

dimensional forms: 
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and the corresponding non-dimensional initial and boundary conditions are 





















∞→→→→

=−=
∂

∂
−=

∂

∂
=

>

≥===≤

.as0,0,0

,0at1,1,0
:0

,0allfor0,0,0:0

yCu

y
y

C

y
u

t

yCut

θ

θ

θ

                                                            (12) 

The equations (9), (10) and (11) subject to the initial and boundary conditions (12) are exactly 

solved by the usual Laplace transform technique without any restriction and the solutions are 

derived for different cases with the help of inverse Laplace transform formulas given in [5]. 
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Case I:   1Sc,1Pr ≠≠  
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321 ,, FFF  and 4F  are dummy functions, and 321 ,, zzz  and 4z are dummy variables. 

Results and Discussion 

In order to gain a physical insight into the problem, the velocity and temperature profiles have been 

drawn for different values of radiation, magnetic field and buoyancy ratio parameters in Figs. 1 to 4. 

Note that the thermal and concentration buoyancy forces act in the same direction when 0>N  

(aiding buoyancy force) and they oppose each other when 0<N  (opposing buoyancy force). The 

case 0=N  corresponds to the situation when there is no buoyancy force effect from mass diffusion.     
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In Fig.1, the temperature profiles for different values of thermal radiation parameter are depicted. 

It is clear from Fig. 1 that the fluid temperature decreases with increasing radiation parameter 

values.  The velocity profiles for different values of radiation parameter are shown in Fig. 2. From 

Fig. 2 it is observed that the velocity increases with increasing radiation parameter in the presence 

Fig. 2 Velocity profiles for different R 

Fig. 3 Velocity profiles for different M Fig. 4 Velocity profiles for different N 

Fig. 1 Temperature profiles for different R 
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of aiding buoyancy force )0( >N . The influence of magnetic field parameter on the velocity field is 

shown in Fig. 3. From this figure it is observed that the velocity decreases with increasing magnetic 

field parameter due to the resistive type force called the Lorentz force which has tendency to slow 

down the fluid motion in the boundary layer flow. The influence of buoyancy ratio parameter on the 

velocity field is shown in Fig. 4. From Fig. 4 it can be seen that the fluid velocity increases with 

increasing aiding buoyancy force and the fluid velocity decreases with increasing opposing 

buoyancy force in the boundary layer. However, an opposite behavior in the fluid velocity is 

encountered adjacent to the plate. 

Conclusions 

An exact solution to the problem of unsteady magnetohydrodynamic free convection flow past an 

infinite vertical plate with constant heat and mass flux in the presence of thermal radiation is 

obtained with the help of Laplace transform technique. Closed form solutions for the velocity, 

temperature and concentration fields are presented. It is found that the fluid velocity increases with 

increasing radiation parameter and aiding buoyancy force whereas it decreases with increasing 

magnetic field parameter and opposing buoyancy force. 
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