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This  paper  proposes  a nonlinear  system  identification  using  parallel  linear-plus-neural  network  models
that provide  more  accurate  predictions  on  the  process  behavior  even  on  extrapolated  regions.  For  this
purpose,  a residuals-based  identification  algorithm  using  parallel  integration  of  linear  orthonormal  basis
filters  (OBF)  and neural  networks  model  is  developed  and  analyzed  under  range  extrapolations.  Results
on the  van  de  Vusse  reactor  case  study  show  enhanced  extrapolation  capability  when  compared  to the
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conventional  neural  network  (NN)  and  the  series  Wiener-NN  models.
© 2013 Elsevier Ltd. All rights reserved.
. Introduction

In nonlinear system identification using black box models such
s neural networks (NN), one possible approach is to use a parallel
ombination of linear-plus-NN models. Sjoberg et al. [1] suggested
ia their personal communication with McAvoy that the residuals
rom a linear model may  be used to develop an NN model to pick
p the nonlinearities in nonlinear system identification. This par-
llel combination through the usage of residuals is very attractive
n two ways: viz. (1) a nonlinear model that is not properly devel-
ped performs worse than a linear one, hence by having a linear
odel developed in the first step ensures that reasonable models

re obtained [1], and (2) applying the NN on the residuals (inputs
nd residuals as network input and output) ensures that the overall
onlinear model performs at least as good as or better than the lin-
ar model [1]. The usage of residuals provides another interesting
erspective. In [2], it is stated that there are cases where residuals
re not due to randomness and may  actually inherit the charac-
eristics of the original system. Under such circumstances, a high
orrelation in the residuals is usually observable, indicating the fail-

re of the model to capture the full characteristics of the underlying
ystem.
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Even though the idea is not new, no guidelines for the selection
of linear structures that will be effective for practical identification
nor any analysis on the extrapolation capability of such combina-
tion are reported in literature. Residuals analysis has been explored
as part of an identification method that involved embedding theo-
rem and hybrid Elman-NARX network for predicting chaotic time
series data [2].

Based on these gaps, this paper proposes a nonlinear system
identification using parallel linear-plus-NN models that provide
more accurate predictions on the process behavior even on extrap-
olated regions. In this work, the justification on how the proposed
parallel linear-plus-NN models help in improving the range extrap-
olation capability of conventional NN is presented. The selection
of effective linear structures that is useful for practical iden-
tification is also elaborated. A case study is used to illustrate
the identification and the extrapolation capabilities of the pro-
posed structure. The full extent of the extrapolation capability
of such models is extensively analyzed under range extrapo-
lations, which are typically encountered in practice in process
industries.

2. Residuals-based parallel OBF-NN model

2.1. Model structure
Consider a general nonlinear output error (NOE) model struc-
ture expressed as

y(k) = f (u(k − 1),  ... , u(k − m), ŷ(k − 1),  . . . , ŷ(k − m)) + e(k) (1)
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here e(k) refers to the system white noise. A general linear model
tructure, on the other hand, may  be represented as

(k) = G(q)u(k) + e(k) (2)

Without loss of generality (1) and (2) can be combined to get

(k) = G(q)u(k) + f (u(k − 1),  ... , u(k − m),

ŷr(k − 1),  . . . , ŷr(k − m))  + e(k) (3)

here ŷr refers to the predicted residuals of the linear model, i.e.
ˆr = ymeasured − ŷlinear. Equation (3) represents a parallel structure
n which a linear model is combined with a non-linear model rep-
esented by f (·).

In this paper, orthonormal basis filters (OBF) (e.g. Laguerre,
autz filters) is selected to represent the linear model. OBF models
ave recently found widespread applications in linear system iden-
ification [3]. OBF models have several characteristics that make
hem very promising for control relevant system identification.
heir parameters can be easily estimated using linear least square
ethod. They are consistent in their parameters for most practical

pen-loop identification problems and time delays can be easily
stimated and incorporated into the model.

It is known that OBF based model has qualities that are very
ttractive to capture linear dynamics [3]. One of the major reasons
or this is the fact that the OBF model allows one or more poles of
he system to be introduced in the model which renders OBF model
ts gray nature. The OBF model is expressed as

(k) =

⎛⎝ N∑
j=1

cjLj(q)

⎞⎠u(k) + e(k) (4)

here N is the number of orthonormal basis filters, cj are the opti-
al  OBF model parameters, Lj(q) are the orthonormal basis filters, q

s the forward shift operator, u(k) is the input to the system, and e(k)
s the system white noise. Note that in (4), the poles of the system
re part of the orthonormal filters construction, and can be seen as
he incorporation of prior knowledge of the system dynamics into
he model [3].

For the nonlinear model structure, we propose that the non-
inearity in a system be effectively captured by the multi-layer
erceptron (MLP) neural networks, yielding the proposed parallel
BF-NN model. MLP  network is chosen due to its simpler structure
nd a fewer parameters in comparison to recurrent neural networks
RNN). Though not thoroughly covered here, MLP  and RNN are just
wo out of many neural networks. However, not all are equally suit-
ble for modeling and control of dynamic systems, and the most
ommonly adopted network for these purposes is the MLP  [4].

Hence, for a SISO system with a MLP  neural network with one
idden layer in parallel with a linear OBF model of (4), the one-step
head prediction from (3) becomes

ˆ(k + 1) =

⎛⎝ N∑
j=1

cjLj(q)

⎞⎠u(k) + ˇ

[
b2 +

K∑
i=1

w2
i ϕ(b1

i + w1
i,1x(k))

]
(5)

here the nonlinear neural network function approximation
s trained with regression vectors consisting of previous plant
nputs and previous residuals of the linear model, x(k) = [u(k −
),  . . . , u(k − m), ŷr(k − 1),  . . . , ŷr(k − m)]. Also ϕ,  ̌ : R → R are the
onlinear activation functions (e.g. hyperbolic tangent etc.), b are

he biases, K is the number of hidden neurons, and the weights of
he network are denoted by w1

i,j
, i = 1, . . . , K (with ith neuron and

th input, in this case j = 1) for the first layer, and w2
i
, i = 1, . . . , K

or the second layer.
Fig. 1. The proposed sequential identification of residuals-based parallel OBF-NN
models (I: simulation configuration, II: prediction configuration).

2.2. Parameter estimation

The sequential identification structure proposed for the
residuals-based parallel OBF-NN models is illustrated in Fig. 1. The
linear OBF model is identified first, and the nonlinear NN model is
then trained with the predicted residuals. The pseudo-independent
nature of this parallel structure allows both the models to capture
the essential characteristics of the underlying process separately
and hence more accurately.

Given a set of nonlinear data to be identified [u(k), ym(k)], the
algorithm can be described as follows:

1. Develop a parsimonious OBF model using methods described by
[3] to get y1.

2. Calculate the predicted residuals using ŷr = ym − y1.
3. Develop the NN model using standard BP algorithm with x(k) =

[u(k − 1),  . . . , u(k − m), ŷr(k − 1),  . . . , ŷr(k − m)]  as inputs and
ŷr(k) as outputs of the NN model.

2.3. Extrapolation using residuals based parallel OBF-NN model

Consider a single hidden layer MLP  NN, with hyperbolic tangent
activation functions in the hidden layer, and a linear output layer
with coefficient of 1. The general equation for the configuration
with one input, one output and two  hidden nodes can be written
as

ŷ(k + 1) = w2
1 tan h(b1

1 + w1
1,1x(k)) + w2

2 tan h(b1
2 + w1

2,1x(k)) + b2

(6)

Equation (6) refers to the MLP  NN model output. For OBF-NN
model, the corresponding equation can be derived from (5) assum-
ing that the residuals neural network configuration of OBF-NN has
the same configurations as (6).

ŷ(k + 1)

= yOBF +

⎡⎢⎣w̃2
1 tan h(̃b1

1 + w̃1
1,1x̃(k)) + w̃2

2 tan h(̃b1
2 + w̃1

2,1x̃(k)) + b̃︸  ︷︷  ︸2

⎤⎥⎦

residuals−NN

(7)

where ∼ sign refers to the corresponding weights, biases and input
regression vectors for the residuals network.
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From (6) and (7), it is obvious that the output of the hidden nodes
n both networks is governed by the hyperbolic tangent function.
imilarly, if another activation function is used (i.e. logistic func-
ion), the output from the hidden layer’s nodes would be governed
y that function. If these hidden nodes outputs were to be plot-
ed for the networks in (6) and (7), they both would resemble a
yperbolic tangent curve within the saturation points of [-1,1]. Dur-

ng training, the network translates and scales these hidden layer
urves within the hard limits of [-1,1] until the best fit for the train-
ng range is obtained. This is done by adjusting the weights and
iases. The network weights determine the activation function’s
lopes, and the biases determine the activation function’s position
4]. Hence one would expect that both networks (or any networks
n general) would not be able to handle satisfactorily data that are
eyond the original range of that used during training.

However, what greatly differentiates between the two network
odels is the nature of the data that the networks work upon. In

he conventional MLP  NN given by equation (6), the network deals
ith actual values of the process variables. In contrast, the resid-
als network in (7) handles only residuals values of the process
ariables. The linear OBF model in (7) acts as an excellent base for
he residuals network, provided that the parameters are chosen
dequately. Linear model usually captures the average dynamics
f the nonlinear process, and more importantly, its extrapolation
ehavior is linear which is preferable for dynamic systems. The lin-

ar OBF model ensures that the inputs to the residuals network are
lways not too far off from the original training range.

Therefore, by combining a linear, gray box model (OBF) and a
onlinear model (NN), the dynamics of a nonlinear system can be
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Fig. 2. Input–output data set for
ontrol 23 (2013) 1562– 1566

effectively captured with a good potential for extrapolation. In the
next section, a van de Vusse reactor case study is presented to illus-
trate the efficacy of the proposed method in range extrapolation
analysis.

3. Case study

In this section, the identification and range extrapolation capa-
bilities of the proposed model structure are compared with that of
pure linear OBF, conventional MLP  network as well as with series
Wiener-MLP structure [5] using the nonlinear van de Vusse reactor
which is frequently used as a benchmark test problem for various
identification and control strategies [6].

The linear component is identified using Laguerre filters as
described in [3]. The input data to the NN, i.e., x(k) = [u(k −
1), . . . , u(k − m), ŷr(k − 1), . . . , ŷr(k − m)], is segregated as train-
ing and validation sets (75% for training, and 25% for validation) as is
normally done with any NN modeling. Standard approach in devel-
oping any NN model is by using the trial-and-error method [4] in
determining the number of layers, the number of neurons and the
transfer functions in each layer. In this work, a single hidden layer
MLP  network is used since it is the most common configuration
adopted. The transfer functions are fixed with hyperbolic transfer
functions in the hidden layer for all models. The number of hidden
layer neurons is allowed to vary from 4 to 30, and the one that gives

the lowest error is selected. Root mean square error (RMSE) is used
as the convergence criteria.

The performance of the proposed model is compared with con-
ventional MLP  NN and the series Wiener-MLP developed by Saha
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The corresponding prediction errors are represented in Fig. 3.
As can be observed, the RMSE errors for the training set are similar
for all nonlinear models, except for the linear OBF  model. However,
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t al. [5]. In [5] specifically, the separate blocks of the Wiener
odels are represented by Laguerre filters and MLP  NN in series,

espectively, and the models are solved sequentially. The Laguerre
arameter ‘p’ is chosen based on the step response of the process
t its nominal operating point, as ‘p’ dictates the dominant pole(s)
f the process. After fixing a proper value of ‘p’ the network is then
rained. Inputs to the NN consists of outputs of the Laguerre filters.

In the van de Vusse reactor [6], reactant A is to be converted to
he desired product B, but the product B degrades to by-product C.
n addition to this consecutive reaction, a high-order parallel reac-
ion occurs by which the reactant A is converted to by-product D.

k1−→B
k2−→C

A
k3−→D

The mathematical model of this reactor is described by the fol-
owing set of ordinary differential equations (ODE):

dcA

dt
= qr

Vr
(cA0 − cA) − k1cA − k2c2

A

dcB

dt
= − qr

Vr
cB + k1cA − k2cB

dTr

dt
= qr

Vr
(Tro − Tr) − �Hr

�rcpr
+ ArU

Vr�rcpr

(Tc − Tr)

dTc

dt
= 1

mccpc
(Qc + ArU(Tr − Tc))

The net heat of reaction (�Hr) for the above reactions is
xpressed as:

Hr = �h1k1cA + �h2k2cB + �h3k3c2
A

here �hi refers to heat of reactions. Nonlinearity can be found in
eaction rates (kj) which are described via the Arrhenius expres-
ion:

j(Tr) = k0,j exp

(
−Ej

RTr

)
, for j = 1, 2, 3

here k0,j represents the pre-exponential factors and Ej are acti-
ation energies. Fixed parameters of the system are taken from
6].

Nonlinear system identification is carried out for the SISO sys-
em by considering the dynamic characteristics from the changes
n the space velocity, Fv = qr/Vr (h−1), and the product outlet con-
entration, CB (kmol/m3). The training set of the input–output data
or the range extrapolation study are as shown in Fig. 2(a). The
imulated data is generated by introducing a ‘Random number’
nput signal to the system with mean and variance of 20 and 200,
espectively.

The OBF model for the OBF-NN is developed with 6 Laguerre
lters and one pole at 0.9048. The estimated OBF parameters are

OBF-NN = [−8.5179 × 10−4 − 7.6897 × 10−4 − 2.8837 × 10−4

− 0.0010 1.7712 × 10−4 − 0.0014]

The NN model for the residuals consists of 5 hidden neurons. The
dentified Wiener-MLP model has 9 hidden neurons in its NN sub-
ystem, and the OBF model has one pole at 0.9801 with 6 Laguerre

lters. The estimated OBF parameters are

Wiener−MLP = [−0.0013 − 1.7215 × 10−5 5.2602 × 10−5 8.5982

× 10−6 5.5387 × 10−5 − 3.3944 × 10−6]
Fig. 3. Prediction errors for the training and extrapolation data sets under medium
nonlinearity conditions.

The identified conventional MLP  (NN) model has 19 neurons in
its hidden layer. Fig. 2(b) shows the extrapolation data set up to an
average of 9% increase in Fv beyond the original training range, and
Fig. 2(c) shows the extrapolated data set up to an average of 30%
increase in Fv.
6001 6101 6201 6301 6401 6501 6601 6701 6801 6901 7000
0.4
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Fig. 4. Range extrapolation analysis: performance comparison.
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control of MIMO  nonlinear systems using Wiener–Laguerre models, Chemical
Engineering Communication 191 (2004) 1083–1119.
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hen subjected to data that slowly drifts away from the original
raining set, it is observed that the proposed parallel OBF-NN model
as superior extrapolation performance in comparison to the series
iener-MLP model, as well as against conventional MLP  model.

onventional MLP  model failed to properly estimate the values
utside the original training range. Series Wiener-MLP structure
n the other hand, relies on pure linear behavior when subjected
o extrapolation. The corresponding extrapolation errors for this

odel are almost equivalent to that of pure linear OBF model, as
bserved from Fig. 3.

Fig. 4 shows the measured and predicted values of the product
utlet concentration, CB (kmol/m3) for an average increase of 22% in
he Fv (h−1) beyond the original training range. Excellent prediction
erformance is visible for the proposed OBF-NN model.

Comparing the series and parallel structures used in this paper,
he linear OBF model in both cases may  give, in general, the same
redicted output provided that the number of Laguerre filters used

s the same. However, since the identification is done sequen-
ially in [5], whatever error exists during the calculation of the
aguerre filters output in the series structure is carried forward to
he NN predictions. Hence, the purely linear extrapolation behav-
or observed in Fig. 3. In contrast, the parallel structure depicted in
ig. 1 takes into account both the linear and NN models predictions
seudo-independently, and this enhanced the overall extrapolation
ehavior.
. Conclusion

In this paper, a residuals-based algorithm using parallel inte-
ration of linear orthonormal basis filters (OBF) and a multilayer

[

ontrol 23 (2013) 1562– 1566

perceptrons (MLP) neural networks model is developed and ana-
lyzed under range extrapolations. Results on the nonlinear van de
Vusse reactor case study show the enhanced range extrapolation
capability of the proposed structure when compared to the con-
ventional MLP  NN and the series Wiener-MLP models.
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