Process Control Forum 2013

CONQUERING CHALLENGES FOR SUSTAINABLE EXCELLENCE

Hosted by PETRONAS Gas Berhad

Organized by SKG16.4 Process Control Fraternity

> 21-22 August 2013 Hyatt Regency Kuantan Resort

Process Control Forum 2013

TAGUCHI METHOD FOR CONDENSATE FRACTIONATION UNIT (CFU)

Dr. Nooryusmiza Yusoff and Lee Chia Chun Universiti Teknologi PETRONAS (UTP)

> 21-22 August 2013 Hyatt Regency Kuantan Resort

Introduction of Taguchi's Parametric Design

- A powerful statistical technique to optimize the process design problems
- ✓ Reduces process variation through robust design of experiments (DOE).
- Provides alternative solution where the conventional factorial design is simplified in a cost and time efficient way
- Establishment of unbiased experiments through the balanced characteristic of Orthogonal Arrays (OA)

Orthogonal Array Selection

	- 68	1.5			c		- 10	e 13	C 8	8 - 83	2 52	2 13	£ 33	Numb	er of P	aramet	ers (P)		6	6 . 15	5 - 52	i 0		5 53	5 - 53	8 - 3	6 8	<u>к а</u>	x	
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
<u>un</u> 2	L4	L4	L8	L8	L8	LB	L12	L12	L12	L12	L16	L16	L16	L16	L32	L32	L32	L32	L32	L32	L32	L32	L32	L32	L32	L32	L32	L32	L32	L32
le le	L9	L9	L9	L18	0	L18	L18	L27	L27	L27	L27	L27	L36	L36	L36	L36	L36	L36	L36	L36	L36	L36								
ag 4 L	L'16	L'16	L'16	L'16	L'32	2'32	L'32	L'32	L'32																					
5 1	L25	L25	L25	L25	L25	L50	L50	L50	L50	L50	L50				Ī															

												_
					\checkmark	Num	ber of Fa	ctors	>			
			2	3	4	5	6	7	8	9	10	
<	ivels	2	L4	L4	L8	L8	L8	L8	L12	L12	L12	
	of Le	3	L9	L9	L9	L18	L18	L18	L18	L27	-127	
	her	4	Ľ16	Ľ16	Ľ16	Ľ16	Ľ32	Ľ32	Ľ32	Ľ32	Ľ32	
	Nun	5	125	L25	L25	L25	L25	L50	L50	L50	150	
						\sim						

Experiment	P1	P2	P3
1	1	1	1
2	1	2	2
3	2	1	2
4	2	2	1

Notes:

- 1. Arrays are designed to allow all parameters to vary twice at Levels 1 and 2 (unbiased experiments).
- 2. Need to run only 4 instead of 27 (3³) experiments.

Process Flow Diagram of CFU

Model Validation: Comparison of Operating Parameters

Unit	No. of Tray	Main Product Stream	Parameter	HYSYS	Actual	Deviation (%)
C-101		5-0	Flow Rate (kg/h)	34801.1	35356.0	-1.6
Condensate	32	530 Discel to storage	Temperature (°C)	60.5	60.0	0.8
Fractionator		Diesei to storage	Pressure (kPa)	156.9	160.0	-1.9
C 402		520	Flow Rate (kg/h)	24709.9	23662.0	4.4
C-102 Karacana Strinnar	22	S29 Karacana ta staraga	Temperature (°C)	60.2	60.0	0.3
Kerosene Stripper		Kerosene to storage	Pressure (kPa)	706.1	720.0	-1.9
C 102		C4r	Flow Rate (kg/h)	16835.4	17601.0	-4.3
C-103 Nanhtha Stahilizor	65	JPC to storado	Temperature (°C)	40.2	40.0	0.5
Napittia Stabilizer		LPG to storage	Pressure (kPa)	1177.0	1200.0	-1.9
		654	Flow Rate (kg/h)	162483.3	159006.0	2.2
		JUN to storado	Temperature (°C)	40.2	40.0	0.4
C-104	74	LIN LO SLOI age	Pressure (kPa)	255.0	260.0	-1.9
Naphtha Splitter	/4	Sar	Flow Rate (kg/h)	107639.3	108461.0	-0.8
		J25 HVN to storage	Temperature (°C)	75.2	75.0	0.3
		nviv to storage	Pressure (kPa)	480.5	490.0	-1.9

Model Validation: Comparison of Products Specifications based on ASTM Standard

Product	Specification	Value	HYSYS
LDC	Density at 15 °C, Kg/m³ (ASTM D 2598)	560 (max)	553.85
LPG	Vapor Pressure at 37.8 °C, kPa (ASTM D 1267)	380-830 (max)	433.33
LUN	Density at 15 °C, Kg/m³ (ASTM D 1298 or ASTM D 4052)	660-730 (max)	690.18
LIIN	Reid Vapor Pressure at 37.8 °C, kPa (ASTM D 323)	94.5 (max)	75.55
	Density at 15 °C, Kg/m³ (ASTM D 1298)	755 (max)	741.54
HVN	Viscosity at 40 °C, cSt (ASTM D 445)	0.55 - 1.04	0.6713
	Density at 15 °C, Kg/m³ (ASTM D 1298)	775-839 (max)	788.78
Kerosene	Viscosity at 40 °C, cSt (ASTM D 445)	1 - 2 (max)	1.3921
	Density at 15 °C, Kg/m³ (ASTM D 1298 or ASTM D 4052)	820-845 (max)	831.50
Diesel	Viscosity at 40 °C, cSt (ASTM D 445)	2 - 4.5 (max)	3.4799

Problem Statements and Objective

Statement Problem Objective

Fluctuation of market price of condensate feedstock and its products

- Time-varying nature of condensate feedstock flow rates
- Challenges in determining the significant decision variables for effective implementation of optimization strategy

 To systematically determine the significant decision variables for profit optimization of CFU using Taguchi method

Implementation of Taguchi Method

Description of Objective Function, Factors and Levels

Objective function: To achieve the highest profit by selecting the most significant operating parameters (controllable and noise factors) at their optimal configuration.

Factors	Level 1	Level 2	Level 3	Units	Description	
Α	122	124	126	°C	C-101 Stage 28 Temperature	•
В	304	306	308	°C	C-101 Bottom Stage Temperature	
C	23139	25710	28281	Kg/hr	C-102 Kerosene Prod. Flow Rate	
D	288900	321000	353100	Kg/hr	C-101 Top Pump-Around Flow Rate	Controllable
Е	83	84	85	°C	C-103 Top Stage Temperature	Factors
F	1137	1177	1217	kPa	C-103 Top Stage Pressure	
G	150.4	151.4	152.4	°C	C-104 Bottom Stage Temperature	
Н	80.07	81.07	82.07	°C	C-104 Top Stage Temperature	
I	103.4	106.4	109.4	kPa	C-104 Top Stage Pressure	Noise
J	330338	347724	365110	Kg/hr	Condensate Flow Rate	Factors
K	2.42	2.49	2.56	RM/kg	Condensate Price	Tactor3

Taguchi Orthogonal Arrays

D					Factors				
Kuns	Α	В	С	D	E	F	G	H	Ι
1	2	3	1	2	2	3	1	1	2
2	2	1	2	3	1	2	3	1	2
3	1	1	1	1	2	2	2	2	2
4	3	3	2	1	2	1	3	1	3
5	2	3	1	2	3	1	2	2	3
6	3	2	1	3	2	1	3	3	2
7	2	2	3	1	1	2	3	2	3
8	2	1	2	3	3	1	2	3	1
9	1	1	1	1	1	1	1	1	1
10	3	2	1	3	1	3	2	2	1
11	3	3	2	1	1	3	2	3	2
12	3	3	2	1	3	2	1	2	1
13	1	2	2	2	3	3	3	1	1
14	1	2	2	2	1	1	1	2	2
15	2	1	2	3	2	3	1	2	3
16	1	3	3	3	2	2	2	1	1
17	3	1	3	2	3	2	1	3	2
18	3	1	3	2	1	3	2	1	3
19	2	2	3	1	2	3	1	3	1
20	3	1	3	2	2	1	3	2	1
21	1	3	3	3	1	1	1	3	3
22	1	3	3	3	3	3	3	2	2
23	2	2	3	1	3	1	2	1	2
24	3	2	1	3	3	2	1	1	3
25	2	3	1	2	1	2	3	3	1
26	1	2	2	2	2	2	2	3	3
27	1	1	1	1	3	3	3	3	3

Casas	Fac	tors
Cases	J	K
1	1	1
2	1	2
3	1	3
4	2	1
5	2	2
6	2	3
7	3	1
8	3	2
9	3	3

 $L_9(3^2)$ external array

 $L_{27}(3^9)$ internal array

HYSYS DataBook Case Study

Selection of both the independent and dependent variables for the HYSYS simulations based on the cross-orthogonal arrays design.

	[] 01 1	 1	Available Case Studies
itate	State I		Case Study 1
- Mass Flow [kg/n]	3.3030+005		
pec Value (Stage 28) [L]	124.0	 	
ipec Value (Bottom Stage Temp) [C]	308.0		
ipec Value (keross Prod Flow) [kg/h]	2.314e+004		
ipec Value (PA_1_Rate(Pa)) [kg/h]	3.210e+005		
ipec Value (Top Stage Temp) [C]	84.00		
itage Pressure (Condenser) [kPa]	1217		
ipec Value (Bottom Stage Temp) [C]	150.4		
ipec Value (Top Stage Temp) [C]	80.07		
itage Pressure (Condenser) [kPa]	106.4		
)iesel - Mass Flow [kg/h]	3.435e+004		
leavy Naphtha - Mass Flow [kg/h]	1.051e+005		Available Displays
erosene - Mass Flow [kg/h]	2.314e+004		C Table
ight Naphtha - Mass Flow [kg/h]	1.519e+005		Crash
.PG - Mass Flow [kg/h]	1.565e+004		l chaph

Case Study 1	Case Studies Data Sele	Case Shudu 1		
Add	Culleni Case Study	Case Study 1		
Delete	Object	Variable	Ind	Dep
		Mass Flow		
View	C-101 Condens	Spec Value (Stage 28)		
	C-101 Condens	Spec Value (Bottom Stage Temp)		
	C-101 Condens	Spec Value (keross Prod Flow)	J	
	C-101 Condens	Spec Value (PA_1_Rate(Pa))		
	C-103 Naphtha	Spec Value (Top Stage Temp)		
	C-103 Naphtha	Stage Pressure (Condenser)		
	C-104 Naphtha	Spec Value (Bottom Stage Temp)	V	
	C-104 Naphtha	Spec Value (Top Stage Temp)		
	C-104 Naphtha	Stage Pressure (Condenser)		
	LPG @COL2	Mass Flow		
Avajlable Displays	Light Naphtha (Mass Flow		
🔿 Table 🛛 🚬 👘	Heavy Naphtha	Mass Flow		
Transpose Table Results	kerosene @CO	Mass Flow		
◎ Graph	Diesel @COL1	Mass Flow		

Results of Cross-Orthogonal Array Experiments

					Profits (RM '	'ooo/hour)				
Runs	x ¹ⁿ	x^{2n}	x^{3n}	x^{4n}	x ⁵ⁿ	x ⁶ⁿ	x^{7n}	x ⁸ⁿ	x ⁹ⁿ	$\overline{\chi}^n$
1	109.12	85.99	62.87	114.26	89.92	65.58	119.41	93.86	68.30	89.92
2	109.01	85.88	62.76	114.10	89.76	65.42	119.20	93.65	68.09	89.76
3	110.76	87.64	64.51	115.96	91.62	67.28	121.17	95.61	70.05	91.62
4	106.93	83.80	60.68	111.92	87.58	63.24	116.92	91.36	65.80	87.58
5	108.73	85.60	62.48	113.86	89.52	65.18	118.99	93.43	67.87	89.52
6	107.40	84.27	61.15	112.50	88.16	63.82	117.60	92.05	66.49	88.16
7	110.65	87.53	64.40	115.79	91.45	67.11	120.90	95.34	69.78	91.44
8	110.56	87.44	64.32	115.74	91.40	67.06	120.93	95.37	69.81	91.40
9	110.86	87.74	64.61	116.07	91.73	67.39	121.28	95.72	70.17	91.73
10	107.75	84.63	61.50	112.87	88.53	64.19	117.99	92.44	66.88	88.53
11	109.46	86.33	63.21	114.58	90.24	65.90	119.71	94.16	68.60	90.24
12	109.45	86.32	63.20	114.58	90.23	65.89	119.71	94.15	68.59	90.24
13	111.35	88.23	65.10	116.54	92.19	67.85	121.72	96.16	70.61	92.19
14	111.79	88.67	65.55	117.00	92.66	68.32	122.21	96.65	71.10	92.66
15	110.05	86.93	63.80	115.20	90.86	66.52	120.36	94.80	69.24	90.86
16	112.54	89.41	66.29	117.75	93.41	69.07	122.95	97.39	71.83	93.41
17	110.26	87.14	64.02	115.44	91.10	66.76	120.57	95.01	69.45	91.08
18	109.13	86.01	62.88	114.24	89.90	65.56	119.32	93.76	68.20	89.89
19	112.44	89.31	66.19	117.67	93.33	68.99	122.87	97.31	71.76	93.32
20	109.83	86.71	63.59	114.98	90.64	66.30	120.09	94.54	68.98	90.63
21	112.72	89.60	66.47	117.95	93.60	69.26	123.15	97.60	72.04	93.60
22	112.30	89.18	66.05	117.50	93.16	68.82	122.69	97.13	71.57	93.16
23	111.10	87.98	64.86	116.27	91.93	67.59	121.40	95.84	70.29	91.92
24	106.83	83.70	60.58	111.90	87.56	63.22	116.97	91.42	65.86	87.56
25	109.65	86.53	63.41	114.83	90.49	66.15	120.01	94.45	68.90	90.49
26	111.70	88.58	65.45	116.90	92.56	68.22	122.11	96.55	70.99	92.56
27	110.55	87.43	64.30	115.74	91.40	67.06	120.94	95.38	69.82	91.40
Mean	110.11	86.98	63.86	115.27	90.92	66.58	120.41	94.86	69.30	90.92

Note: Superscript n represents the experimental runs in external array.

Significance of Taguchi Method in Profit Optimization of CFU

Descriptions of Statistical Tools used in Taguchi Method

Statistical Tools: SNR, ANOM and ANOVA

Signal-to-Noise Ratio (SNR)

 $(SNR)^n = -10log(MSD)^n$

where N=27 is the no. of exp. in the internal array

$$(MSD)^n = \frac{1}{M} \sum_{m=1}^M \frac{1}{(x^{mn})^2}$$

where M=9 is the no. of exp. in the external array Mean Squared Deviation (MSD) is defined to uphold the "the larger the better" quality principle.

- Analysis of Means (ANOM) and Analysis of Variance (ANOVA)

D Average of factor K at level L in Case m, \bar{x}_{kl}^m

$$\bar{x}_{kl}^m = \frac{1}{N_R} \sum_{n=1}^{N_R} x_{kl}^{mn}$$

where $N_r = 9$, K = 9 and L = 3 are correspondingly the no. of repeated levels, controllable factors and levels

Statistical Tools: SNR, ANOM and ANOVA

- Analysis of Means (ANOM) and Analysis of Variance (ANOVA)
 - \Box Average of factor K over all levels L in each Case m, \bar{x}_k^m

 \Box Variance, V_k^m

$$V_k^m = \frac{\sum_{l=1}^L (\bar{x}_{kl}^m - \bar{x}_k^m)^2}{L_k^m - 1}$$

D Percentage Contribution, C_k^m

$$C_k^m = \frac{100V_k^m}{\sum_{k=1}^K V_k^m}$$

The denominator is called the **Degrees of Freedom,** $(DOF)_k^m$ of factor k over all levels L in case m.

-

Results: Averaged Profit Analysis

	\overline{x}_{Al}	\overline{x}_{Bl}	\overline{x}_{Cl}	\overline{x}_{Dl}	\overline{x}_{El}	\overline{x}_{Fl}	\overline{x}_{Gl}	\overline{x}_{Hl}	\overline{x}_{Il}
Level 1	92.48	90.93	89.88	91.05	90.93	90.80	91.22	90.44	91.33
Level 2	90.96	90.93	90.83	91.00	90.90	90.91	91.01	90.96	90.95
Level 3	89.32	90.91	92.05	90.72	90.94	91.06	90.54	91.36	90.49
\overline{x}_k	90.92	90.92	90.92	90.92	90.92	90.92	90.92	90.92	90.92
D_k	1560.30	10.28	1126.66	132.67	19.17	136.10	297.47	441.16	404.97
E_k	3158.35	26.05	2166.18	338.72	12.90	257.72	683.90	922.45	836.13
R _k	1	8	2	6	9	7	5	3	4

\Box Ranking of factors, R_k from ANOM (Descending Order: **A**, **C**, **H**, **I**, **G**, **D**, **F**, **B**, **E**)

\Box Ranking of factors, R_k from ANOVA (Descending Order: **A**, **C**, **H**, **I**, **G**, **D**, **F**, **E**, **B**)

	Controllable Factors										
	Α	В	С	D	Е	F	G	Н	I		
$(DOF)_k$	2	2	2	2	2	2	2	2	2		
V_k	2494854.10	192.37	1178777.95	32722.27	527.52	16762.11	122866.38	213934.54	175293.46		
C_k	58.90	0.00	27.83	0.77	0.01	0.40	2.90	5.05	4.14		
R_k	1	9	2	6	8	7	5	3	4		

Results: SNR Analysis

Run	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$(SNR)^n$	98.39	98.38	98.58	98.13	98.35	98.19	98.56	98.56	98.59	98.23	98.43	98.43	98.64	98.69
Run	15	16	17	18	19	20	21	22	23	24	25	26	27	
$(SNR)^n$	98.50	98.77	98.52	98.39	98.77	98.47	98.80	98.75	98.61	98.12	98.46	98.68	98.56	

D Ranking of factors, R_k from ANOM (Descending Order: **A**, **C**, **H**, **I**, **G**, **D**, **F**, **E**, **B**)

	Controllable Factors										
	SNR _{Al}	SNR _{Bl}	SNR _{Cl}	\overline{SNR}_{Dl}	\overline{SNR}_{El}	SNR _{Fl}	SNR _{Gl}	SNR _{Hl}	SNR _{Il}		
Level 1	98.67	98.51	98.39	98.52	98.50	98.49	98.53	98.45	98.55		
Level 2	98.51	98.50	98.49	98.51	98.50	98.50	98.51	98.51	98.51		
Level 3	98.32	98.50	98.63	98.48	98.50	98.52	98.46	98.55	98.45		
\overline{x}_k	98.50	98.50	98.50	98.50	98.50	98.50	98.50	98.50	98.50		
E _k	0.3507	0.0054	0.1341	0.0397	0.0061	0.0296	0.0755	0.1030	0.0938		
R _k	1	9	2	6	8	7	5	3	4		

\Box Ranking of factors, R_k from ANOVA (Descending Order: **A, C, H, I, G, D, F, E, B**)

	Controllable Factors										
	Α	В	С	D	E	F	G	Н	I		
$(DOF)_k$	2	2	2	2	2	2	2	2	2		
V _k	3.08E-02	7.56E-06	1.45E-02	4.60E-04	1.03E-05	2.20E-04	1.50E-03	2.67E-03	2.21E-03		
C_k	58.73	0.01	27.75	0.88	0.02	0.42	2.87	5.10	4.21		
R_k	1	9	2	6	8	7	5	3	4		

Analysis of Results: Percentage Contribution of Factors in Averaged Profit and SNR Analysis

- \Box A factor with the highest C_k value is the most significant
- □ Results of Averaged Profit and SNR are found identical
- \Box Ranking of factors, R_k in descending order of importance: A, C, H, I, G, D, F, E, B

Analysis of Results: Effects of Noise Factors

- □ A difference of about 4000 RM/hour is noticed between Groups I and II and between Groups II and III.
- □ This difference is caused by the presence of noise factor J (plant load).
- Increasing the plant load increases the amount of Condensate feed and thus CFU profit
- □ The highest values of average profit in each Groups I, II and III are generated from K_1 (factor K, level 1) configuration (Case 1, 4 and 7).
- Highly priced condensate feed decreases the CFU profit while the cheaper one increases it.

Optimal Configuration from SNR Analysis Significance of Individual Factors

Response Plots of Averaged Profit and SNR Analysis

• Optimal configuration of controllable and noise factors are $A_1B_1C_3D_1E_3F_3G_1H_3I_1J_3K_1$, which yield the highest profit value of **124,247 RM/hour.**

Statistical Tools: SNR, ANOM and ANOVA

Optimum Profit

- □ Summation of global mean, \bar{x}^m for the same case with maximum differences of average values of factor k at level l, \bar{x}^m_{kl} from the corresponding average values at all levels, \bar{x}^m_k
- □ Additional 9 runs of experiments are required

$$x_{opt}^m = \bar{x}^m + \left(\sum_{k=1}^K \max(\bar{x}_{kl}^m) - \bar{x}_k^m\right)$$

Comparison between Experimental Results from Validation Runs and Calculated Optimum Profit from ANOM

Small deviation values of less than 1% for all Cases 1-9 are obtained.

PETRONAS

Profit Optimization of CFU using Taguchi Method

Significance of 9 controllable and 2 noise factors influencing the CFU profit is studied by conducting 243 experiments in a Taguchi crossed-orthogonal array set up.

A total percentage contribution of 98.2% from 5 controllable factors (A, C, G, H and I) while the others 4 factors are found trivial.

CONCLUSION

Maximum CFU profit acquired from an optimum configuration based on the response plots of the averaged profit and SNR analysis.

Average deviation of 0.45% in all cases (9 validation runs) between the experimental results and calculated optimum profit from ANOM equation.

Improved profit further verifies the optimality of configuration.

PROCESS CONTROL FORUM 2013

References

[1] Ali, S. F., & Yusoff, N (2012). Determination of Optimal Cut Point Temperatures at Crude Distillation Unit using the Taguchi Method, International Journal of Engineering & Technology, 12(6), 36-44.

[2] Begum, D. A., Rahman, A., & Kirtania, K. (2010). Condensate Fractionation Column: Design Variation Study by Simulation. *Journal of Chemical Engineering*, 25, 65-70.

[3] Barman, G., Kumar, A., & Khare, P. (2011). Removal of Congo Red by Carbonized Low-Cost Adsorbents: Process Parameter Optimization Using a Taguchi Experimental Design. *Journal of Chemical & Engineering Data*, 56(11), 4102-4108.

[4] Edgar, T. F., Himmelblau, D. M., & Lasdon, L. S. (2001). Optimization of chemical processes (Vol. 2). New York: McGraw-Hill.

[5] Engin, A. B., Özdemir, Ö., Turan, M., & Turan, A. Z. (2008). Color removal from textile dyebath effluents in a zeolite fixed bed reactor: Determination of optimum process conditions using Taguchi method. *Journal of hazardous materials*, 159(2), 348-353.

[6] Hartaj Singh (2012). Taguchi Optimization of Process Parameters: A Review and Case Study, International Journal of Advanced Engineering Research and Studies, 1(3), 39-41.

[7] Maghsoodloo, S., Ozdemir, G., Jordan, V., & Huang, C. H. (2004). Strengths and limitations of Taguchi's contributions to quality, manufacturing, and process engineering. *Journal of Manufacturing systems*, 23(2), 73-126.
[8] Roy, R. K. (2001). Design of experiments using the Taguchi approach: 16 steps to product and process improvement. Wiley-Interscience.

[9] Young, R. E. (2006). Petroleum refining process control and real-time optimization. *Control Systems, IEEE*, 26(6), 73-83.

[10] Yusoff, N., Ramasamy, M., & Yusup, S. (2011). Taguchi's Parametric Design Approach for the Selection of Optimization Variables in a Refrigerated Gas Plant. *Chemical Engineering Research and Design*, 89, 665-675.

The End

PROCESS CONTROL FORUM 2013