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Abstract:  

This paper presents a universal pressure drop model in pipelines using the group method of data 

handling (GMDH)-type neural networks technique. The model has been generated and validated 

under three phase flow conditions. As it is quite known in production engineering that estimating 

pressure drop under different angles of inclination is of a massive value for design purposes. The 

new correlation was made simple for the purpose of eliminating the tedious and yet the 

inaccurate and cumbersome conventional methods such as empirical correlations and 

mechanistic methods. In this paper, GMDH-type neural networks technique has been utilized as 

a powerful modeling tool to establish the complex relationship between the most relevant input 

parameters and the pressure drop in pipeline systems under wide range of angles of inclination. 

The performance of the model has been evaluated against the best commonly available empirical 

correlations and mechanistic models in the literature. Statistical and graphical tools were also 

utilized to show the significance of the generated model. The new developed model reduced the 

curse of dimensionality in terms of the low number of input parameters that have been utilized as 

compared to the existing models. 

Keywords: Pressure drop; Multiphase flow; GMDH-type neural networks technique; universal 

model. 

 

Introduction: 

Two phase flow phenomenon; namely liquid and gas, or what is synonymously called 

Multiphase flow (MPF), occurs in almost all upstream oil production, as well as in many surface 

downstream facilities. It can be defined as a concurrent flow of a stream containing a liquid 

hydrocarbon phase, a gaseous phase, a produced water phase, and solids phase. The phenomenon 



3 
 

is governed mainly by bubble point pressure; whenever the pressure drops below bubble point in 

any point, gas will evolve from liquid resulting in a multiphase gas-liquid flow. Additional 

governing factor is the gas-liquid components and their changing physical characteristics along 

the pipe length and configuration with the change of temperature. Furthermore, certain flow 

patterns will develop while the pressure decreases gradually below the bubble point. The flow 

patterns depend mainly on the relative velocities of gas and liquid, and gas/liquid ratio. Needless 

to mention that sharp distinction between these regimes is quite intricate 
[1]

.  

The pressure drop (DP) mainly occurs between wellhead and separator facility. It needs to be 

estimated with a high degree of precision in order to execute certain design considerations. Such 

considerations include pipe sizing and operating wellhead pressure in a flowing well; direct input 

for surface flow line and equipment design calculations 
[1]

. Determination of pressure drop is 

very important because it provides the designer with the suitable and applicable pump type for a 

given set of operational parameters. Generally, the proper estimation of pressure drop in pipeline 

can help in design of gas-liquid transportation systems. 

In this study, a Group Method of Data Handling (GMDH) or Abductory Induction Mechanism 

(AIM) approach has been utilized. The approach has been developed by a Ukraine scientist 

named Alexy G. Ivakhnenko, which has gained wide acceptance in the past few years 
[2]

.  The 

overall objective of this study is to minimize the uncertainty in the multi-phase pipeline design 

by developing representative models for pressure drop determination in downstream facilities 

(gathering lines) with the use of the most relevant input variables and with a wide range of 

angles of inclination. The proposed GMDH model’s performance will be thoroughly analyzed 

and compared against the one for Beggs and Brill model 
[3]

, Gomez et al model 
[4]

, and Xiao et al 

model 
[5]

. 



4 
 

Materials and methods: 

GMDH approach is a formalized paradigm for iterated (multi-phase) polynomial regression 

capable of producing a high-degree polynomial model in effective predictors. The process is 

evolutionary in nature, using initially simple regression relationships to derive more accurate 

representations in the next iteration. To prevent exponential growth and limit model complexity, 

the algorithm only selects relationships having good predicting powers within each phase. 

Iterations will stop when the new generation regression equations start to have poor prediction 

performance than those of previous generation. The algorithm has three main elements; 

representation, selection, and stopping. It applies abduction heuristics for making decisions 

concerning some or all of these three steps 
[2]

. 

The proposed algorithm shown by equation 1 is based on a multilayer structure using the general 

form, which is referred to as the Kolmogorov-Gabor polynomial (Volterra functional series). 
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Where; the external input vector is represented by X = (x1, x2 …), y is the corresponding output 

value, and a is the vector of weights and coefficients. The polynomial equation represents a full 

mathematical description. The whole system of equations can be represented using a matrix form 

as shown in equation 2. 
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Equation 1 can be replaced by a system of partial polynomial for the sake of simplicity as shown 

in equation 3. 

2
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Where i, j = 1, 2, …, M; i ≠ j. 

The inductive algorithm follows several systematic steps to finally model the inherent 

relationship between input parameters and output target 
[6]

. Data sample of  observations and 

independent variables (as presented in equation 2) corresponding to the system under study is 

required; the data will be split into training set  and checking set  

Firstly all the independent variables (matrix of X represented by equation 2) are taken as pair of 

two at a time for possible combinations to generate a new regression polynomial similar to the 

one presented by equation 3 where p and q are the columns of the X matrix. 
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A set of coefficients of the regression will be computed for all partial functions by a parameter 

estimation technique using the training data set A and equation 4. 

The new regression coefficients will be stored into a new matrix C.
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According to the mathematical law, the number of combinations of input pairs is determined by; 
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The polynomial at every N data points will be evaluated to calculate a new estimate called zpq as; 

iqippqiqpqippqiqpqippqpqpqi xxfxexdxcxbaz  22

,  

(7) 

The process will be repeated in an iterative manner until all pairs are evaluated to generate a new 

regression pairs that will be stored in a new matrix called Z matrix. This new generation of 

regression pairs can be interpreted as new improved variables that have a better predictability 

than the original set of data X (presented by equation 9). 
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(9) 

Quality measures of these functions will be computed according to the objective rule chosen 

using the testing data set B. This can be done through comparing each column of the new 

generated matrix Z with the dependent variable y. The external criterion may somewhere be 

called regularity criterion (root mean squared values) and defined as; 
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The whole procedure is repeated until the regularity criterion is no longer smaller than that of the 

previous layer. The model of the data can be computed by tracing back the path of the 

polynomials that corresponds to the lowest mean squared error in each layer. 

The best measured function will be chosen as an optimal model. If the final result is not satisfied, 

F number of partial functions will be chosen which are better than all (this is called "freedom-of-

choice") and do further analysis. Schematic diagram of self-organizing GMDH algorithm is 

depicted in Fig 1. 
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Fig 1: Schematic Diagram of Self-Organizing Algorithm with M inputs and K layers 
[6]

. 

 

The research methodology involves filling the gap exists in the literature by assessing and 

evaluating the best multiphase flow empirical correlations and mechanistic models. The 

assessment will be dealing with their performance in estimating pressure drop whilst using 
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available statistical and graphical techniques. The performance of the developed models will be 

compared against the best available correlations used by the industry 
[6]

. 

Network Performance Comparison 

Pressure drop calculation for Beggs and Brill correlation 
[3]

, Gomez et al. model 
[4]

, and Xiao et 

al. 
[5]

 model had been conducted using the freeware DPDLSystem. The software allows great 

flexibility in selecting PVT methods, type of pressure drop correlation (vertical, inclined, and 

horizontal), operating conditions, and flow-rate type data. Only test data had been chosen for 

comparison for each selected model against the proposed GMDH model. The network 

performance comparison had been conducted using the most critical statistical and analytical 

techniques. Trend analysis, group error analysis, and graphical and statistical analysis are among 

these techniques. 

Trend analysis 

A trend analysis was performed for each generated model to check whether it was physically 

correct or not. Interchangeably, this analysis is the synonyms of sensitivity analysis. This 

analysis aids in fully understanding the relationship between input variables and output and 

increases the robustness of the generated model. For this purpose, synthetic sets were prepared 

where in each set only one input parameter was varied between the minimum and maximum 

values while other parameters were kept constant at their mean (base) values.  
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Group Error Analysis 

To demonstrate the robustness of the developed model, another statistical analysis was 

conducted, which was group error analysis. The purpose of this analysis was to quantify the error 

produced by each input when grouped to a number of classes based on the average absolute 

relative error as an indicator. The reason for selecting average absolute relative error is that it is a 

good indicator of the accuracy of all empirical correlations, mechanistic model; as well as for the 

new developed models.  

Statistical Error Analysis 

This error analysis had been utilized to check the accuracy of the models. The statistical 

parameters used in the present work were: average percent relative error, average absolute 

percent relative error, minimum and maximum absolute percent error, root mean square error, 

standard deviation of error, and the correlation coefficient.  Those statistical parameters are well 

known for their capabilities to analyze models’ performances, and have been utilized by several 

authors, 
[1], [7-8]

. This will be considered as the main criterion in statistical error analysis 

throughout this study. AAPE or MAPE (Mean Absolute Error) has invaluable statistical 

properties in that it makes use of all observations and has the smallest variability from sample to 

sample 
[9]

.  

Graphical Error Analysis 

Graphical tools aid in visualizing the performance and accuracy of a correlation or a model. Only 

one graphical analysis techniques was employed, which is cross-plot. 
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Cross-plots 

In this graphical based technique, all estimated values had been plotted against the measured 

values and thus a cross-plot was formed. A 45° straight line between the estimated versus actual 

data points was drawn on the cross-plot, which denoted a perfect correlation line. The tighter the 

cluster about the unity slope line, the better the agreement between the actual and the predicted 

values. This may give a good sign of model coherence. 

Building GMDH Model and limitations 

The process of generating the GMDH Model had started by selecting the relevant input 

parameters. Free software was used for this purpose 
[10]

. This source code was tested with 

MATLAB version 7.1 (R14SP3) 
[11]

. Despite the software allows great flexibility in selecting the 

model parameters, it also provides ample interference. The results of the generated model may be 

limited in their nature due to data attributes range. The assigned results may suffer degradation 

due to type of data used in generating GMDH model. However, the accuracy obtained by 

GMDH model depends on the range of each input variable and the availability of that input 

parameter (parameters). Although the main purpose was to explore the potential of using GMDH 

technique, optimum performance can be obtained using this limited data range in attributes and 

variables. Care must be taken if obtained results applied for data type and range beyond that used 

in generating GMDH model. 
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Results: 

As described initially, a code was utilized for building the final GMDH model. The constructed 

model consists of two layers. 28 neurons were tried in the first layer, while only two neurons 

were included at the end of the trial. Only one neuron had been included for the second layer, 

which was the pressure drop target. However three input parameters had shown pronounced 

effect on the final pressure drop estimate, which were; wellhead pressure, length of the pipe, and 

angle of inclination. The selection of these three inputs had been conducted automatically 

without any from the user’s intervention. They were selected based on their mapping influence 

inside the data set on the pressure drop values. 

This topology was achieved after a series of optimization processes by monitoring the 

performance of the network until the best network structure was accomplished. Fig 2 shows the 

schematic diagram of the proposed GMDH topology.  
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Fig. 2: Schematic Diagram of the Proposed GMDH Topology 
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Summary of Model’s Equation 

As described in the previous section the model consists of two layers as follows: 

Total Number of layers: 2 

Layer #1 

Number of neurons: 2 (neurons x9 and x10) 

55

8885

58 10

77

88 87

789

x*x*008-021166e3.53811231+

 x*x*2593490890.00474009- x*x*005-39217e1.73958945+

 x*7025334170.00560599- x*4573353.28280927+ 068822404.104040- =x

x*x*15515830360.00081380-

 x*x*5257451070.00470613-x*x*5616085620.00219488

+ x*58950420.39589437- x*8418063.32804279+ 84218428.130594- = x

 

Layer#2 

Number of neurons: 1 

99

1010109

910

x*x*214486860.02420180-

 x*x*887361140.01854575- x*x*184104760.04773877+ 

x*70555020.34927960+ x*07457030.35723855- 41176438.6163548 =y 

 

Where; 

x5 = length of the pipe, ft 

x7 = angle of inclination, degrees 

x8 = wellhead pressure, psia 

y = simulated pressure drop by GMDH Model. 
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Trend Analysis for the GMDH Model 

A trend analysis was conducted for every model’s run to check the physical accuracy of the 

developed model. Fig 3 shows the effect of angle of inclination on the pressure drop. The effect 

of angle of inclination was investigated where all range of angles of inclination was plotted 

against pressure drop. Fig 4 shows the relationship between the pressure drop and length of the 

pipe.  
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Fig 3: Effect of Angle of Inclination on Pressure Drop 

 

 

Fig 4: Effect of Pipe Length on Pressure Drop at four Different Angles of Inclination 
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Group Error Analysis for the GMDH Model against Other Investigated Models 

To demonstrate the robustness of the developed model, group error analysis was performed. 

Average absolute relative error is utilized as a powerful tool for evaluating the accuracy of all 

models. Fig 5 and Fig 6 present the statistical accuracy of pressure drop correlations and models 

under different groups. Fig 5 shows the statistical accuracy of pressure drop grouped by length of 

the pipe. Length of the pipe had been partitioned into five groups and plotted against the 

respective average absolute percent relative error for each group.  

 

Fig 5: Statistical Accuracy of Pressure Drop for the Polynomial GMDH Model and other 

Investigated Models Grouped by Pipe Length (With Corresponding Data Points) 

 

Furthermore, the statistical accuracy of pressure drop estimation for the polynomial GMDH 

model against other investigated models grouped by the angle of inclination is plotted in Fig 6. 

Data were partitioned into four categories to include all possible inclination (downhill, 

horizontal, uphill, and vertical). 
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Fig 6: Statistical Accuracy of Pressure Drop for the Polynomial GMDH Model and other 

Investigated Models Grouped by Angle of Inclination (With Corresponding Data Points) 

Statistical and Graphical Comparisons of the Polynomial GMDH Model 

Statistical Error Analysis 

The same statistical parameters were adopted for comparison for all types of models.  Summary 

of statistical comparisons between all sets (training, validation, and testing) of the polynomial 

GMDH Model is presented in Table 1. 

Graphical Error Analysis of the Polynomial GMDH Model 

The graphical analysis techniques (cross-plots) was employed to visualize the performance of the 

Polynomial GMDH Model and other investigated models.  
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Table 1: Statistical Analysis Results of the Polynomial GMDH Model 

 Statistical  

Parameters Training Validation Testing 

E a 18.5282 31.6448 19.5921 

E r -6.6299 -21.1243 -0.9040 

E Max 286.9142 583.0868 130.6760 

E Min 0.0862 0.2303 0.0904 

RMSE 38.2075 90.9291 33.5273 

R “fraction” 0.9771 0.9544 0.9750 

STD 12.0291 14.0404 14.3347 

Cross-plots of the Polynomial GMDH Model 

Fig 7 presents cross-plots of predicted pressure drop versus the actual one for Polynomial 

GMDH Model (testing sets only). As shown by the respective graph, a correlation coefficient of 

0.975 was obtained by the GMDH model. Fig 8 shows a comparison of correlation coefficients 

for GMDH model against all investigated models. Comparison between the performance of all 

investigated models plus the polynomial GMDH model is provided in Table 2. Other additional 

criteria for evaluating model’s performance are Standard Deviation, Root Mean Square Error 

(RMSE), Minimum Absolute Percent Relative Error, and Maximum Absolute Percent Relative 

Error. Fig 8 shows a comparison of correlation coefficient for the polynomial GMDH model 

against all investigated models.  

Also, Fig 9 shows a comparison of Average Absolute Percent Relative Error (AAPE) for the 

polynomial GMDH model and other models. Root Mean Square Error (RMSE) is used to 

measure the data dispersion around zero deviation. Fig 10 shows a comparison of root mean 

square errors for the polynomial GMDH model against all investigated models.  
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Fig 7: Cross-plot of Predicted vs. Measured Pressure Drop for Testing Set (Polynomial GMDH 

Model) 

 

 

Fig 8: Comparison of Correlation Coefficients for the Polynomial GMDH Model against All 

Investigated Models 

 

Fig 11 shows a comparison of standard deviation for the polynomial GMDH model against the 

rest of the models. Comparison between the performance of all investigated models as well as 

GMDH model is provided in Table 2. 
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Fig 9: Comparison of Average Absolute Percent Relative Errors for the Polynomial GMDH 

Model against All Investigated Models 

 

 

 

Fig 10: Comparison of Root Mean Square Errors for the Polynomial GMDH Model against All 

Investigated Models 
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Fig 11: Comparison of Standard Deviation for the Polynomial GMDH Model against All 

Investigated Models 

 

Table 2: Statistical Analysis Results of Empirical Correlations, Mechanistic Models, against the 

Developed GMDH model 

Model Name 
E a E r E Max E Min RMSE R STD 

Beggs and Brill model 20.076 -10.987 79.00 0.3333 26.7578 0.9805 16.9538 

Gomez et al. model 20.802 -2.046 72.65 0.525 26.0388 0.9765 17.7097 

Xiao et al. model 30.845 29.818 71.4286 0.0625 35.4582 0.9780 15.7278 

Polynomial GMDH 

Model 
19.592 -0.904 130.68 0.0904 33.5273 0.9750 14.3347 

 

Discussion: 

The main purpose of utilizing this technique is to explore the potential of using GMDH as a tool, 

for the first time, to predict the pressure drop under wide range of angles of inclination. The 

exploration includes finding the most influential input parameters in estimating the pressure drop 

under wide range of angles of inclination. For this reason, statistical and graphical analyses were 

conducted extensively to show the cons and pros of the generated model against the investigated 
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models. From Fig 3, it is clear that the model was able to generate the sound track since the 

pressure drop is known to be an increasing function up to 90 degree and beyond that angle it’s a 

decreasing function. Additionally, and as shown in Fig 4, the model produced an expected 

behavior where the length of the pipe was plotted against the simulated pressure drop at four 

different angles of inclination. The GMDH Model was able to predict the correct phenomenon 

where the pressure drop is known to be an increasing function with respect to pipe length. Also it 

is clear that with increasing angle of inclination from downhill to uphill the pressure drop is an 

increasing function.  

For group error analysis, Polynomial GMDH model was found superior in obtaining the lowest 

average absolute percent relative error for range of one pipe length groups (11901<L< 16000), as 

shown in Fig 5. However, Fig 6 shows the group error analysis for the pressure drop against 

different angles of inclination. The GMDH model’s performance was superior especially for 

horizontal pipes (0
o
) and achieved the lowest average absolute percent relative error for the range 

of angle of inclination between 90 and 208 (uphill angles only). 

The model achieved reasonable correlation coefficient between estimated and actual values 

where a value of 0.975 was obtained. Bear in mind that the obtained correlation coefficient was 

achieved with only three input parameters; which are angle of inclination, wellhead pressure, and 

length of the pipe. In addition, the performance of the GMDH may be improved further if more 

data sets have been introduced with a wide range of tested variables. This may give an indication 

that most of the input variables used for other investigated model may serve as noise data.  

The GMDH model showed good agreement between actual and estimated values especially at 

the middle range (from 70 - 150 psia). However, this measure (correlation coefficient) was not 
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taken as a main criterion for evaluating models performance since it will not give clear insight 

into the actual error trend while points under the 45
0
 may be recovered by others under the same 

line. Beggs and Brill model achieved the highest correlation coefficient as shown by Fig 8. 

However, the main criterion for evaluating model’s performance, which is the Average Absolute 

Percent Relative Error, revealed that the GMDH test set outperformed all investigated models in 

AAPE with a value of approximately 19.6%, followed by Beggs and Brill model as shown in Fig 

9. The comparison of root mean square errors for the polynomial GMDH model against all 

investigated models was shown in Fig 10. This time, the lowest RMSE is achieved by Gomez et 

al. model (26.04%) while the GMDH model ranked third before the worse model (Xiao et al. 

model) with a value of 33.53%. 

Standard Deviation (STD) was used to measure model advantage. This statistical feature is 

utilized to measure the data dispersion. A lower value of standard deviation indicates a smaller 

degree of scatter. As shown in Fig 11, GMDH model achieves the lowest STD with a value of 

14.33%, followed by Xiao et al Model (15.73%). 

As seen from Table 2, the GMDH model failed to provide low maximum absolute percent 

relative error where a value of 130.6% is obtained. On the other hand, Xiao et al. model achieved 

the lowest maximum absolute percent relative error that reaches (71.4%). 

If this criterion was selected to evaluate models performance, the GMDH model will be 

considered as the worst among the rest of investigated models. On contrary, if the minimum 

absolute percent relative error is considered as the only parameter for evaluating models 

performance, the GMDH will be ranked second after the Xiao et al 
[5]

. model with a value of 

0.0904. 
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