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Abstract-The exploration of hydrocarbon reservoirs 

in ultra deep water requires the use of innovative 

floating platform configurations.  The 

hydrodynamic interaction of such platforms with 

ocean waves and the understanding and 

quantification of the nonlinear components of 

theses interactions have been a subject of 

continuing research.  This paper examines these 

non-linear interaction components for a typical 

deep-draft spar platform type that is increasingly 

being used in the oceans now.  The motion 

responses of the spar platform in different 

environmental conditions have been determined 

using a time-domain simulation method.  The 

numerical method presented here can consider 

several nonlinearities such as free surface force 

integration, displaced position force calculation 

and nonlinearities in the equation of motion.  Wave 

forces are calculated using Morison’s equation.  

The effect of using different wave kinematics 

methods on the predicted surge, heave and pitch 

responses are presented and discussed. 

 
I. INTRODUCTION 

 

As the offshore industry depletes 

hydrodynamic reservoirs below the sea bed in 

deep water depths (up to 1500m), it is 

increasingly required to develop such deposits in 

considerably high deeper water.  The increased 

water depth makes the use of sea bed mounted 

platforms uneconomic leaving a variety of 

floating platform types as the viable only options 

for oil and gas production operations.  One such 

option is the spar platform which is basically a 

very large floating vertical cylinder structure of 

around 200m draft and 40m or so in diameter.  

Such hull configurations have been shown to 

have several advantages over other options such 

as TLP and ship shape hulls.  Some of these 

advantages include structural simplicity, low 

motions in moderate and extreme ocean waves 

because of their relatively long natural periods, 

good protection of riser connections to the sea 

bed, low cost and so on (Vardeman et al.[1]). 

In recent years the realization that large 

spar platforms offer low cost production options 

in very deep water has prompted several 

experimental studies and numerical simulations 

to obtain a better understanding of their response 

to ocean waves.  Research using numerical 

simulations has utilized the two traditional 

frequency domain and time domain approaches.  

One such study presented by Weggel et al. [2] 

uses the frequency domain technique and 

directly gives the statistical parameters of the 

spar response at relatively low computation cost.  

However it may be subject to large errors due to 

the linearization of some non-linear terms, such 

as the viscous term, in the equations of motion.  

There is evidence that this linearization probably 

overestimates viscous effects [3].  Most 

researchers prefer, therefore, to simulate spar 

motion in the time domain and this is the 

approach adopted in this paper. 

Simulation of the motion of a spar buoy 

requires the definition of the equations of motion 

and the evaluation of all forces acting on it due 

to wind, current ocean waves and mooring lines.  

The conventional approach in offshore 

engineering is to use the linear form of the 

equations to describe the motions of rigid bodies.  

For large motions the non-linear equations of 

motion [4] should be used but it is only practical 

if the exciting forces can be calculated without 

evolving wave diffraction analysis. 

A key element of the analysis of a spar 

buoy is to evaluate the forces and moments on it 

due to ocean waves and currents.  One 

possibility to obtain these is to perform a 

numerical analysis of the fully non-linear 

interaction between the spar and its surrounding 

fluid.  Although it is not impossible, this task 

require very powerful computer resources and is, 

therefore, not feasible in practice.  An alternative 

approach is to carry out a diffraction analysis 

based on second order potential theory (see for 

example, Ran et al. [3]).  The computation cost 

of this approach is still quite high.  Also this 



method usually generates results in the frequency 

domain and thereafter a transformation is needed 

to obtain forces in the time domain. 

Another approach, often used in 

offshore engineering for wave force evaluation, 

is based on slender body theory that requires 

much less computational effort and can be 

directly implemented in time domain analysis.  

In this approach, the body is assumed ‘thin’ and 

the force (and/or moment) is obtained by the sum 

of the force on each short segment of the slender 

body.  The force in each segment is decomposed 

into two parts - an inviscid force and viscous 

drag force.  One typical slender body wave force 

formulation is the well-known Morison equation, 

in which the first part is proportional to the 

relative acceleration and the second part to the 

product of the relative velocity. 

The main purpose of this paper is to 

investigate the relative importance effect of the 

selected wave kinematics approach on the 

predicted spar responses.  The methodology 

employed uses the fully non-linear equations of 

motion with the mooring lines replaced by 

springs. 

 

II. NUMERICAL PROCEDURE 

 

 Considering the incident waves are long 

crested and advancing in the x-direction, a spar is 

approximated by a rigid body of three degree of 

freedom (surge, heave and pitch), it derives its 

static resistance from support systems (mooring 

lines, risers) and hydrostatic stiffness. 

Two coordinate systems are employed in the 

analysis (see fig.1), the space fixed coordinate 

system oxz and two dimensional local coordinate 

Gζη which is fixed on the body with the origin at 

its center of gravity (CG).  B is the center of 

buoyancy and F denotes fairlead. 

 

 

 
 

Figure.1  3-DOF Surge-heave-pitch Model of the Spar 

 

The dynamic equations of the surge-heave-pitch 

motions of the spar are: 

[M]{
..

X }+[C] {
.

X }+[K]{X}={F(t)}              (1) 

   

where: 

 {X} is the structural displacement vector 

with respect to the center of gravity,  

 {X˙} is the structural velocity vector 

with respect to the center of gravity, 

 {X¨} is the structural acceleration vector 

with respect to the center of gravity,  

 [M] is a mass matrix = M
SPAR

 + 

M
Added Mass

     

 [K] is stiffness matrix = K
)(hycHydrostati
+ 

K
Horizental )(hzSpring

,  

 [C] is structural damping matrix. 

 [F(t)] is the hydrodynamic force vector 

and is calculated using modified 

Morison equation. 

The wave forces are decomposed into the normal 

force EXnF and tangential force EXtF  

 

 

 

 

 

 

 

 

 

 

 

 

 
Cm is the added mass coefficient, Cd is the drag 

coefficient, nV the relative normal velocity and 




 is a unit vector along the n-axis. a and V are 

respectively wave particle acceleration and 

velocity and sr  is strucure velocity.The 

tangential force can be determined by integrating 

the hydrodynamic pressure on the bottom 

surface. 1 is the firdt potential of incident 

waves. 

In time domain using numerical 

integration technique the equation of motion can 

be solved, incorporating all the time dependent 

nonlinearities, stiffness coefficient changes due 

to mooring line tension with time, added mass 

from Morison equation, and with evaluation of 

wave forces at the instantaneous displaced 

position of the structure.  At each step, the force 

vector is updated to take into account the change 

in the mooring line tension.  The equation of 
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motion is solved by an iterative procedure using 

unconditionally stable Newmark Beta method 

and this is programmed using MATLAB. 

 

III. APPLICATION 

 

The methodology presented above has 

been applied to determine the motions of a large 

diameter spar geometry which is being studied in 

the JIP.  The particulars of this spar are given in 

Table 1.  Different environmental conditions as 

outlined in Table 2. have been used to study the 

response.  

 

IV. RESULTS AND DISCUSSION 

 

 The responses of the spar platform in 

regular waves have been determined first.  All 

response results presented in this study are at the 

C.G. of the spar.  Experimental and numerical 

results for this paper under similar conditions are 

presented by Mekha et al. [5], for platform 

motions measured at 55m above SWL.  These 

experimental results can be compared with 

numerical results of this study, although the 

numerical results are not produced here.  Figs. 2 

and 3 show the surge and heave responses in 

LC1 case.  These responses do not appear to be 

affected by the method chosen for estimating 

particle kinematics.  Linear Airy theory, Weeler 

and Chakrabarti stretching formulas are giving 

identical results.  The same trend have been seen 

in pitch response (Fig. 4) also.  However, there is 

a reduction in pitch amplitude when wave 

kinematics are computed only up to the SWL.  

Figs. 5 and 6 show the surge and heave 

responses in the case of regular waves and 

current.  Once again, all the three methods 

predict identical response.  The pitch response in 

the presence of regular waves and uniform 

current is shown in Fig. 7.  It is seen that Weeler 

and Chakrabarti stretching formulas predict 

reduced pitch amplitude compare to Fig. 4 which 

is expected.  The Linear theory also predicts 

lower amplitude of pitch motion which indicates 

that free surface force integration affects pitch 

motion more than surge and heave responses.  

Considering the above mentioned differences 

between the experimental results and our 

numerical results, the results appear to be in 

reasonably good agreement, qualitatively as well 

as quantitatively, with experimental results and 

predictions based on different numerical models.  

JONSWAP spectrum is used for wave 

simulation in the case of random waves LC3 

because it is more versatile and represents the 

spectral peaks better than PM spectrum.   RAO 

for surge, heave and pitch, in (LC3), responses 

are shown in figs.8, 9 and 10 respectively. 

 

V. CONCLUSION 

 

 The nonlinear responses of a spar 

platform under different environmental 

conditions such as regular, random waves and 

current have been determined using a time-

domain simulation model.  The model can 

consider several non-linear effects and the 

complete non-linear rigid body equations of 

motion are solved in the time domain.  

Hydrodynamic forces and moments are 

computed using Morison equation combined 

with accurate prediction of wave particle 

kinematics and force calculations in the 

displaced position of the platform give reliable 

prediction of platform responses. 
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TABLE I.  

 
MAIN PARTICULARS OF JIP SPAR 

Diameter 

 
40.54 m 

Draft 
 

198.12 m 

Mass (with 

entrapped water) 
 

2.592x10^8 kg 

Radius of gyration 

(pitch) 

 

62.33 m 

Center of gravity 

(from SWL) 

 

- 105.98 m 

 
Mooring line 

stiffness (0-13.7m 

offset) 

 

191 KN/m 

Mooring line 

stiffness 

(>13.7m offset) 

406 KN/m 

 
 

 
Table II.  

 

ENVIRONMENTAL CONDITIONS 

 
Case 

 
Description 

LC1 

 
Regular waves, H=6 m, T=14s, No current. 

LC2 
 

Regular waves, H=6m, T=14s, Uniform 
current, 0.5 m/s. 

LC3 

 
Random waves, Hs=13m, To=14s 
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Figure 2. Surge response in regular waves (LC1) 
(a)Linear Airy Wave Theory 

                          (b)Wheeler Stretching  

                          (c) Chakrabarti Stretching 
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Figure. 3 Heave response in regular waves (LC1) 

(a)Linear Airy Wave Theory 
                          (b)Wheeler Stretching  

                          (c) Chakrabarti Stretching 
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Figure. 4 Pitch response in regular waves (LC1) 

(a)Linear Airy Wave Theory 

                          (b)Wheeler Stretching  
                          (c) Chakrabarti Stretching 
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Figure. 5 Surge response in regular waves (LC2) 

(a)Linear Airy Wave Theory 
                          (b)Wheeler Stretching  

                          (c) Chakrabarti Stretching 
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Figure. 6 Heave response in regular waves (LC2 
(a)Linear Airy Wave Theory 

                          (b)Wheeler Stretching  

                          (c) Chakrabarti Stretching 
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Figure. 7 Pitch response in regular waves (LC2) 
a)Linear Airy Wave Theory 

                          (b)Wheeler Stretching  

                          (c) Chakrabarti Stretching 
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Figure. 8  RAO Surge in random waves (LC3) 
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Figure. 9 RAO Heave  in random waves (LC3) 
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Figure.10  RAO Pitch in random waves (LC3) 

 



 


